Stochastic Error Modeling of Smartphone Inertial Sensors for Navigation in Varying Dynamic Conditions
ABSTRACT:
分析了两种手机内的IMU在静态和动态条件的随机误差行为。使用Allan方差和广义最小波矩法对随机误差过程进行估计,将建立的动态模型参数与静态条件下的模型参数进行对比。使用置信区间的方式来区分干净、损坏的数据。一个详细的分析来明确误差参数模型和augmented dynamics的关系。提出了一种新的动态依赖组合导航算法,该算法能够根据平台动态特性在不同误差参数值之间进行切换,以消除动态依赖效应。最终结果表明动态依赖随机误差模型,通过自适应集成算法比传统的静态模型精度更高,同时广义最小波矩法比Allan方差效果更改好。
INTRODUCTION
GNSS适用室外无信号遮蔽的情况,使用条件受限。INS短时精度高,但是误差随时间快速积累。由GNSS提供位置,INS提供姿态的GNSS/INS组合方式,与任意单独系统相比具有更好的性能。但是在某些情况下,比如隧道、城市,长时间的GNSS信号不稳定,组合系统性能完全依赖INS传感器数据质量,采用精确的惯性传感器模型可以提高INS传感器数据质量。
MEMES惯性传感器相比传统的惯性传感器成本低、尺寸小但是精度很差。本质上是由于,传感器测量真值增加了额外的不需要的误差信号,通常分为确定性误差和随机误差。确定性误差比如比例因子和零偏可以通过实验校准来消除。随机误差需要使用特殊的噪声表征技术来进行随机误差建模和估计。因此前面提到的两种误差类型都会显著影响估计的pva,这反映出导航精度的性能退化。特别是INS作为独立系统在GNSS信号较差地区工作时。
Review of Previous Work
建立惯导随机误差模型是一项艰巨耗时的任务,这是由于复杂的随机误差模型可能包含一个甚至多个潜在的随机过程,例如白噪声、相关噪声、随机游走。从时间域和频率域两个方向建立随机模型限制惯性传感器的误差项。
例如自相关函数 研究消费级惯导的相关时间得到姿态。但是由于高模态敏感,相关性技术一般不是处理高动态、高随机过程最好的选择。除此之外频率谱密度(PSD)是自相关函数的傅里叶变换,被广泛应用于惯性传感器随机误差建模。这种方法再不要的缺点是在双对数曲线的低频部分,包含很多重要信息但同时又具有很高的不确定度。在研究长时间的惯性器件噪声输出数据集时会大大影响低频噪声参数识别的准确性。
20世