深度神经进化简介
深度神经进化(Deep Neuroevolution)是一种新兴的人工智能技术,它结合了深度学习和进化算法的优势。这种方法使用进化算法来优化深度神经网络的参数,而不是传统的基于梯度的方法。近年来,深度神经进化在强化学习等领域展现出了巨大的潜力,成为了机器学习研究的一个热点方向。
深度神经进化的基本原理
深度神经进化的核心思想是将进化算法应用于深度神经网络的训练过程。具体来说,它通过以下步骤来优化网络:
- 初始化一个神经网络种群
- 评估每个网络的性能
- 选择表现最好的网络
- 通过突变和交叉等操作产生新一代网络
- 重复步骤2-4,直到达到终止条件
这种方法不依赖梯度信息,因此可以应用于非连续、非可微的问题,这是它相对于传统深度学习方法的一个重要优势。
主要算法介绍
遗传算法(GA)
遗传算法是深度神经进化中最基础和广泛使用的算法之一。在深度神经进化中,GA被用来优化神经网络的权重和结构。Uber AI实验室的研究表明,一个简单的GA就能够有效地训练具有400多万参数的深度神经网络,这是传统进化算法所能进化的最大神经网络。
GA的基本流程如下:
- 初始化神经网络种群
- 评估每个网络的适应度
- 选择最优秀的个体作为父代
- 通过突变产生子代(本研究中未使用交叉操作)
- 重复步骤2-4
值得注意的是,研究人员提出了一种新颖的编码方法,可以将大型参数向量紧凑地存储为初始化种子加上产生一系列突变的随机种子列表。这种创新使得GA能够在深度神经网络的规模上工作,因此被称为Deep GA。
新颖性搜索(NS)
新颖性搜索