Next.js OpenAI 文档搜索入门:打造智能文档问答系统
在人工智能快速发展的今天,如何让企业或项目的文档资料更智能、更易用,成为了一个热门话题。本文将介绍如何利用 Next.js、OpenAI 和 Supabase 等现代技术,构建一个类似 ChatGPT 的智能文档搜索系统,让用户可以通过自然语言与文档进行对话,快速获取所需信息。
项目概述
Next.js OpenAI Doc Search 是一个开源项目,旨在为开发者提供一个模板,用于构建自定义的 ChatGPT 风格文档搜索系统。该项目利用 Next.js 作为前端框架,OpenAI 的强大语言模型作为智能问答的核心,以及 Supabase 作为后端数据库,实现了一个功能完整的文档智能问答系统。
核心功能
-
文档预处理:系统会自动处理
pages
目录下的所有.mdx
文件,将其转化为可用于 OpenAI 文本补全提示的自定义上下文。 -
向量化存储:使用 OpenAI 的 API 将文档内容转换为向量,并存储在支持向量搜索的 Postgres 数据库中。
-
相似度搜索:当用户提出问题时,系统会在向量数据库中进行相似度搜索,找出与问题最相关的文档内容。
-
智能问答:将相关文档内容注入 OpenAI GPT-3 文本补全提示中,生成针对用户问题的智能回答。
技术实现细节
构建时处理
在项目构建阶段,系统会执行以下步骤:
- 预处理知识库:将
.mdx
文件分割成小节。 - 创建并存储嵌入:使用 OpenAI API 为每个文档小节创建嵌入向量,并将其存储在 Postgres 数据库中。
这个过程通过 generate-embeddings
脚本实现,确保只有在文件发生变化时才重新生成嵌入,提高了效率。
运行时处理
当用户提出问题时,系统会执行以下步骤:
- 创建问题嵌入:使用 OpenAI API 将用户问题转换为向量。
- 执行向量相似度搜索:在数据库中查找与问题最相关的文档内容。
- 生成回答:将相关内容注入 OpenAI GPT-3 文本补全提示中,生成回答。
- 流式响应:将 AI 生成的回答以流的形式返回给客户端,实现实时响应。
本地开发指南
要在本地运行该项目,需要按照以下步骤操作:
-
配置环境变量:
- 复制
.env.example
文件为.env
- 设置
OPENAI_KEY
、NEXT_PUBLIC_SUPABASE_ANON_KEY
和SUPABASE_SERVICE_ROLE_KEY
- 复制
-
启动 Supabase: 确保本地安装了 Docker,然后运行:
supabase start
-
启动 Next.js 应用: 在新的终端窗口中运行:
pnpm dev
-
使用自定义 .mdx 文档:
- 将文档转换为
.mdx
格式 - 运行
pnpm run embeddings
重新生成嵌入 - 重新运行
pnpm dev
刷新页面
- 将文档转换为
部署指南
该项目可以轻松部署到 Vercel 平台。Vercel 会自动设置所需的环境变量并配置数据库架构。开发者只需设置 OPENAI_KEY
即可完成部署。
项目优势
-
快速集成:提供了完整的模板,开发者可以快速构建自己的文档智能问答系统。
-
高度可定制:基于开源技术栈,开发者可以根据需求进行深度定制。
-
实时响应:采用流式响应技术,为用户提供类似 ChatGPT 的实时交互体验。
-
可扩展性:利用 Supabase 的向量搜索功能,可以轻松处理大规模文档库。
-
现代技术栈:使用 Next.js、OpenAI 和 Supabase 等热门技术,易于维护和扩展。
结语
Next.js OpenAI Doc Search 项目为开发者提供了一个强大的起点,用于构建智能文档搜索系统。通过结合 Next.js 的前端优势、OpenAI 的语言模型能力和 Supabase 的数据存储功能,该项目展示了如何将先进的 AI 技术应用于实际的文档管理场景。无论是对于企业内部知识库、开源项目文档还是在线学习平台,这种智能文档搜索系统都有着广泛的应用前景。
随着 AI 技术的不断进步,我们可以期待看到更多类似的创新应用,进一步提升信息获取和知识管理的效率。开发者们可以基于这个项目进行扩展和优化,为特定领域或场景打造更加专业和智能的文档问答系统。
文章链接:www.dongaigc.com/a/nextjs-openai-docs-search
https://www.dongaigc.com/a/nextjs-openai-docs-search