k-means-constrained: 带有最小和最大聚类大小约束的K-means聚类算法

k-means-constrained:带有最小和最大聚类大小约束的K-means聚类算法

 

K-means聚类是一种广泛使用的无监督学习算法,用于将数据点划分为K个簇。然而,传统的K-means算法不允许用户控制每个簇的大小,这在某些应用场景中可能会导致不理想的结果。为了解决这个问题,k-means-constrained算法应运而生。

k-means-constrained是一种改进的K-means聚类实现,它允许用户为每个聚类指定最小和最大大小约束。这种方法在保持K-means高效性的同时,提供了更灵活的聚类控制。

算法原理

k-means-constrained的核心思想是修改K-means算法的聚类分配步骤。具体来说,它将聚类分配问题转化为最小成本流(Minimum Cost Flow, MCF)线性网络优化问题。这个优化问题通过成本缩放推送重标记(cost-scaling push-relabel)算法求解,该算法使用了Google的Operations Research工具中的SimpleMinCostFlow实现,这是一个高效的C++实现。

这种方法的灵感来自Bradley等人的研究。k-means-constrained对原始的MCF网络进行了修改,使其不仅可以指定最小聚类大小,还可以指定最大聚类大小。

主要特点

  1. 大小约束: 允许用户为每个聚类指定最小和最大大小。

  2. 基于scikit-learn: 代码基于scikit-learn的KMeans实现,保持了相似的API,便于用户使用。

  3. 高效实现: 利用Google的Operations Research工具实现最小成本流算法,保证了计算效率。

  4. 灵活性: 可以根据具体应用需求调整聚类大小约束。

安装

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值