2024软件测试面试刷题,这个小程序(永久刷题),靠它快速找到工作了!(刷题APP的天花板)_软件测试刷题小程序-CSDN博客文章浏览阅读2.6k次,点赞85次,收藏12次。你知不知道有这么一个软件测试面试的刷题小程序。里面包含了面试常问的软件测试基础题,web自动化测试、app自动化测试、接口测试、性能测试、自动化测试、安全测试及一些常问到的人力资源题目。最主要的是他还收集了像阿里、华为这样的大厂面试真题,还有互动交流板块……_软件测试刷题小程序https://blog.csdn.net/AI_Green/article/details/134931243?spm=1001.2014.3001.5502最近有一段时间没搞压测了,团队里的同学也在搭建线上压测平台,想着今年七、八月份能够在业务压测中线上实战一把。
这段时间正好在验证新压测系统,也和旧的压测平台做一些对比验证。讲道理旧系统已经比较稳定,应该不会出什么问题。。
然鹅,当你以为没有问题的时候,问题就来了。
全链路压测小队和测试的同学反馈,用旧系统压着压着,就会出现超时的情况,中间没有任何特殊操作。
这就很奇怪了,旧系统已经稳定操作那么久,我自己也没遇到这个情况。
那么,这背后到底发生了什么呢?
问题现象
最直接的问题现象,就是这个异常。
可以看出,JMeter
在测试结束时会将请求相关的metrics
写入到InfluxDB
,而在getResult
等到返回时,出现了3s的SocketTimeoutExcetpion
。
中间没有任何特殊变更,就是一直在做压测对比实验。
问题分析
这么看来,中间出现问题的地方可能有很多,从肉鸡请求到数据持久化到InfluxDB
中,可能是网络、SLB、连接池、慢SQL、InfluxDB负载等。
既然可能性比较多,那就从最直接的异常点开始反查。
InfluxDB
既然出现3s超时,而且是在getResult
阶段,那么比较大概率是InfluxDB的问题,先排查该时间段InfluxDB的状态。
从基础的负载指标来看,好像一切正常,基本可以判断不是负载的问题。
再顺着监控往下查,突然看到这样一段内容。
emmmmm。。。。
Series
类似于关系型数据库里的数据行,每一条Series
类似于数据表中某个tag在某个时间点的数据,有4000W+倒是有可能,毕竟是压测环境在用,压测数据比较多,逻辑上能接受。
但是这个Measurements
类似于关系型数据库里的表,有。。。1600W+。。。这好像就不太对劲了。。
抱着试一试的态度,我把InfluxDB
的旧库删了,重建了压测库,初始化完也只有2个Measurements
,这才符合预期。
那么问题来了,肉鸡和压测控制面同样的代码啥都没改,之前一点问题都没有,这次怎么搞出这么多Measurements
呢?
先来简单了解一下InfluxDB
的基础知识。
InfluxDB中的数据
InfluxDB
是一种时间序列数据库,每一条数据都是一个数据点,数据点由不同的部分组成。
名称 | 必选/可选 | 描述 |
---|---|---|
<measurement> | 必选 | 表示测量值的名称,类似于传统关系型数据库中表的概念。 |
<tag_set> | 可选 | 表示一组 tag 键值对,描述数据的元数据,用于过滤和聚合数据,例如 tag1=value1,tag2=value2,每个标签值对应于一个数据库索引,使得可以快速查询和过滤数据。 |
<field_set> | 可选 | 表示一组 field 键值对,用于描述每个数据点的度量值,例如 field1=value1,field2=value2,可通过处理和聚合字段数据来计算各种统计信息、平均值、总和等。 |
[timestamp] | 可选 | 表示数据点的时间戳,可以是一个 Unix 时间戳(整数)或一个 InfluxDB 时间格式字符串,例如 2015-08-18T00:00:00Z。如果未指定时间戳,则默认使用当前时间。 |
这么看可能有点难以理解,举个栗子。
例如,在监控环境中,用一个measurement
来存储服务器监控数据,其中每个数据点使用tag
来标识服务器的名称、操作系统版本、数据中心等信息,使用多个field
来记录CPU、内存、网络等指标。这样,可以方便地查询、过滤和计算特定标签和字段的数据。
Measurements
了解的InfluxDB
的基础知识后,顺着上面的疑问,先看看这1000多万个Measurements
都是啥。
????
怎么Measurement
的名字都是JSON格式的字符串,而且内容还不完整?
但是不管怎么说,至少有了方向,在InfluxDB数据写入模块的代码里搜搜JSON字符串中的关键字,应该就能找到问题触发的代码,debug一把应该就能知道原因了。
但是。。
难道和代码无关?
JMeter脚本
再翻看了所有可能和压测有关的代码、脚本后,最终我找到了这段内容的原始出处。
对,在JMeter的断言脚本里,脚本逻辑也很简单,在程序返回非2XX时,会把responseBody记录下来,格式化后并打印出来,记录到AssertionResult
里。
好像也没什么不妥,但是通过异常信息反推,还是能发现一些端倪。
-
最终异常和InfluxDB有关,InfluxDB会记录请求异常时的结果数据,中间能产生关联的方式只有通过
AssertionResult
。 -
异常的Measurement名称与格式化后的字符串并不完全相同,缺少了
”assertion failed! response data: %s
,并且还多了一个}
。
我们一个一个来看。
JMeter InfluxDB模块
先来看第一点,JMeter执行完一次采样请求后,会处理其结果。在我们的场景中,因为使用的InfluxDB
模块记录采样数据,最终会进入到InfluxdbBackendListenerClient.handleSampleResults()
中。
该方法会将采样结果中的关键信息进行提取和保存。
在提取采样结果的过程中,会区分采样请求是否成功,如果不成功,就会创建ErrorMetric
。
在构造过程中,responseCode
还未设置,值为空字符串,而我们在JMeter断言脚本中,采样请求失败时设置了AssertionResult.setFailureMessage
,因此会走入第一个逻辑分支,responseCode
和responseMessage
均会被赋值。
最终,创建成功的ErrorMetric
会被放入HttpMetricSender
中进行请求,发送给InfluxDB。
在这个过程中,你会发现存入HttpMetricSender
中的待发送metric是一个拼接好的字符串,而里面就有responseCode
和responseMessage
。
那这就奇怪了,为什么要组装成一个字符串交给HttpMetriceSender
呢?
InfluxDB Line Protocol
InfluxDB Line Protocol
是一种轻量级文本协议,用于向InfluxDB中写入数据。相对于其他协议,Line Protocol更加简单易用,以单行形式描述一个数据点,适用于以时间序列方式进行的数据采集和存储场景。
其语法也比较简单,以约定好的格式进行单行写入即可。
// Syntax
<measurement>[,<tag_key>=<tag_value>[,<tag_key>=<tag_value>]] <field_key>=<field_value>[,<field_key>=<field_value>] [<timestamp>]
// Example
myMeasurement,tag1=value1,tag2=value2 fieldKey="fieldValue" 1556813561098000000
所以,上文提到的ErrorMetric
会拼接成一个Line Protocol
协议格式的文本数据,由HttpMetriceSender
发送给InfluxDB进行写入。
再回到下面这张图,我们可以看看具体写入的tag
和field
是怎样的。
fagent,application={application},transaction={transaction},responseCode={responseCode},responseMessage={responseMessage},userTag={userTag} metric_count={count} {timestamp}
其中,tag
部分到userTag截止,field
只有metricCount,最后加上时间戳,这样看好像也并没有什么问题。
那我们再回到这张异常measurement
图。
里面的异常measurement
的名字,都是前文JMeter
断言脚本中的一部分。
而被截断的部分,正好是在断言脚本中response data: %s
的后面。
那么,有没有一种可能,response data
记录的是接口的实际返回数据,而接口返回的是格式化后的json
数据,如果该数据中有换行符,又被整合到拼接到ErrorMetric
生成的字符串中,按照InfluxDB
的Line Protocol
定义,就会被当成多条数据写入。
举个栗子,顺着上面的数据格式,我们把responseMessage
带入进去,即responseMesssage
中的response data
是一个格式化后的json
数据。
假设responseMessage
的值为assertion failed! response data: {\n "code":0,\n "message":"ok"\n}, not contains: xxx, token: xxx, traceId: xxx
fagent,application={application},transaction={transaction},responseCode={responseCode},responseMessage=assertion failed! response data: {
"code":0,
"message":"ok"
}, not contains: xxx, token: xxx, traceId: xxx ,userTag={userTag} metric_count={count} {timestamp}
带入后,由于格式化json
中有换行符,最终原本单行的数据,被拆分成4行,而在最后一行中,其格式正好是符合Line Protocol
,变成了一条单独写入的行数据,即下面的内容:
}, note contains: xxx, token: xxx, traceId: xxx ,userTag={userTag} metric_count={count} {timestamp}
这正好和我们的现象一致,基本可以断定就是这个问题导致的。
问题根因
综上看来,根本原因是我们的断言脚本中,会在请求状态码非200时,将请求的返回的json
异常信息记录到failureMessage
中,而JMeter
的会将采样异常的请求记录为ErrorMetric
,其中包含了断言结果中的错误信息AssertionResult.failureMessage
,以Line Protocol
写入到InfluxDB
的时候,由于格式错误导致新建了大量的measurement
,影响了查询性能,导致大量查询3s超时。
解决方法
解决方法其实也很简单。
由于测试的同学确实希望记录采样请求异常时的failureMessage
,所以这个内容需要保留。在保留的同时,对failureMessage
进行处理,移除其中的换行符,保证以Line Protocol
写入InfluxDB
时不会出现格式错误就行。最终问题也彻底解决。
总结
其实问题并不复杂,主要是中间涉及到的细节点比较多,如果了解InfluxDB
的Line Protocol
,确实很难想到会和这里的写入格式错误有关。
同时,这里也涉及JMeter
底层对于异常数据的采集和聚合问题,从逻辑上来说failureMessage
可以用作InfluxDB
的数据行tag
,但是如果对其底层不了解的话,也容易带来数据聚合无法收敛的问题,例如异常中包含了唯一键信息。
行动吧,在路上总比一直观望的要好,未来的你肯定会感谢现在拼搏的自己!如果想学习提升找不到资料,没人答疑解惑时,请及时加入群: 786229024,里面有各种测试开发资料和技术可以一起交流哦。
最后: 下方这份完整的软件测试视频教程已经整理上传完成,需要的朋友们可以自行领取【保证100%免费】
软件测试面试文档
我们学习必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有字节大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。