最常用的是最小堆和最大堆,先给出两者的java实现
//最小堆的实现
PriorityQueue<Integer> minHeap = new PriorityQueue<Integer>(); //小顶堆
//最大堆的实现
PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(11,new Comparator<Integer>(){ //大顶堆,容量11
public int compare(Integer i1,Integer i2){
return i2-i1;
}
});
1:出现频率最高的K个数字
题目:
找出数组中出现频率最高的K个数字。比如k=2,数组为[1,2,2,1,3,1],出现频率最高的两个数字是1和2
分析:
首先问频率,想到哈希表。哈希表可以统计数组中数字出现的频率;哈希表的键是数组中的值,哈希表的值是对应值出现的频率。
哈希表统计完后,建立最小堆,最小堆的作用是找出频率最高的K个数字。如果最小堆的大小小于K,直接把从数字到频率的映射添加到最小堆;若最小堆的大小等于K,先判断待添加的数字的频率和顶堆的映射的频率,若堆顶映射的频率大于待添加的数字的频率,说明最小堆中已经存在K个频率最高的数字,则不要加入;若堆顶映射的频率小于待添加的数字的频率,则先弹出最小堆的顶堆对应的映射,在把待添加的映射加到最小堆中。
public LinkedList<Integer> findKthFrequent(int []nums,int k){
Map<Integer, Integer>count=new HashMap<>();
for (int i=0;i<nums.length;i++) {
count.put(nums[i], count.getOrDefault(nums[i], 0)+1);
}
PriorityQueue<Map.Entry<Integer, Integer>> minHeap = new PriorityQueue<>(new Comparator<>() {
public int compare(Map.Entry<Integer, Integer>e1,Map.Entry<Integer, Integer>e2) {
return e1.getValue()-e2.getValue();
}
});
for (Map.Entry<Integer, Integer>entry:count.entrySet()) {
if (minHeap.size()<k) {
minHeap.offer(entry);
}
else {
if (minHeap.peek().getValue()<entry.getValue()) {
minHeap.poll();
minHeap.offer(entry);
}
}
}
LinkedList<Integer>result=new LinkedList<>();
for (Map.Entry<Integer, Integer>entry:minHeap) {
result.add(entry.getKey());
}
return result;
}
时间复杂度为O(nlogk),空间复杂度为O(n),因为开了个哈希表。
2:和最小的K个数对
题目:
给两个递增的数组,从两个数组中各取一个数字u和v组成数对(u,v),请找出和最小的K个数对。如输入[1,5,13,21]和[2,4,9,15],和最小的3个数对为(1,2),(1,4),(2,5);对应输出[ [1,2], [1,4] ,[2,5] ]
分析:
用最大堆存储这和最小的K个数对。当堆中数对的个数小于K时,直接加入新的数对,若个数等于K时,判断堆顶的数对和待加入的数对的和的大小;每次都用堆中数对之和最大的数对和待加入的数对进行判断,这也是为什么用最大堆的原因。
还有个条件我们没用到,就是数组是递增的。因为是找前K个数对,所以只用考虑两个数组中前K个数字就行,为什么?假设第一个数组的第K+1个数和第二个数组的任意一个数组合,都可以找到K个比这个数对和最小的数对,所以只用考虑第一个数组的前K个数,同理,只用考虑第二个数组的前K个数。
public List<List<Integer>> findKSmallest(int []nums1,int []nums2,int k){
PriorityQueue<int[]>maxHeap=new PriorityQueue<>(new Comparator<>() {
public int compare(int []p1,int []p2) {
return p2[1]+p2[0]-p1[0]-p1[1];
}
});
for (int i=0;i<Math.max(k, nums1.length);i++) {
for (int j=0;j<Math.max(k, nums2.length);j++) {
if (maxHeap.size()<k) {
maxHeap.offer(new int[] {nums1[i],nums2[j]});
}
else {
int root[]=maxHeap.peek();
if (root[0]+root[1]>nums1[i]+nums2[j]) {
maxHeap.poll();
maxHeap.offer(new int[] {nums1[i],nums2[j]});
}
}
}
}
List<List<Integer>>result=new LinkedList<>();
while(!maxHeap.isEmpty()) {
int []root=maxHeap.poll();
result.add(Arrays.asList(root[0],root[1]));
}
}
菜鸟一枚,有问题请指出~