浅谈扩展欧几里得算法

P1 拓展欧几里得

已知二元不定方程,其中 a , b a,b a,b 为常数

a x + b y = c ( a , b ∈ Z ) ax+by=c(a,b\in Z) ax+by=c(a,bZ)

若令 k = gcd ⁡ ( a , b ) k=\gcd (a,b) k=gcd(a,b) ,则有 k ∣ ( a x + b y ) k|(ax+by) k(ax+by)

显然,只有 k ∣ c k|c kc 时,不定方程才有整数解。

只需要求出
a x + b y = k ax+by=k ax+by=k
的一组特解,我们设其为 x 0 x_0 x0 y 0 y_0 y0,则有:
a x 0 + b y 0 = k ax_0+by_0=k ax0+by0=k
a x 0 c k + b y 0 c k = k a\frac {x_0c}{k}+b\frac{y_0c}{k}=k akx0c+bky0c=k

那么 a x + b y = c ax+by=c ax+by=c 的一组解则为: x = x 0 c k , y = y 0 c k x=\frac {x_0c}{k},y=\frac{y_0c}{k} x=kx0c,y=ky0c

那么怎么求 a x + b y = k ax+by=k ax+by=k 的解呢,我们把 k = gcd ⁡ ( a , b ) k=\gcd(a,b) k=gcd(a,b) 换回:
a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b)
a ≤ b a\leq b ab ,由欧几里得定理得:

gcd ⁡ ( a , b ) = gcd ⁡ ( b , a % b ) \gcd(a,b)=\gcd(b,a \%b) gcd(a,b)=gcd(b,a%b)
其中 % \% % 为取模运算,设 x 1 x_1 x1 y 1 y_1 y1 满足:
x 1 b + y 1 ( a % b ) = gcd ⁡ ( b , a % b ) x_1b+y_1(a \% b)= \gcd(b,a \% b) x1b+y1(a%b)=gcd(b,a%b)
则:
a x + b y = x 1 b + y 1 ( a % b ) ax+by=x_1b+y_1(a \% b) ax+by=x1b+y1(a%b)
由取模的意义得:

a x + b y = x 1 b + y 1 ( a − b ∗ ⌊ a b ⌋ ) ax+by=x_1b+y_1(a-b*\lfloor \frac{a}{b}\rfloor) ax+by=x1b+y1(abba)

化简得:
a x + b y = y 1 a + b ( x 1 − ⌊ a b ⌋ y 1 ) ax+by=y_1a+b(x_1-\lfloor\frac {a}{b}\rfloor y_1) ax+by=y1a+b(x1bay1)

则一定有一组解为
x = y 1 , y = x 1 − ⌊ a b ⌋ y 1 x=y_1,y=x_1-\lfloor\frac {a}{b}\rfloor y_1 x=y1,y=x1bay1

则问题已经转化为求
b x + ( a % b ) y = gcd ⁡ ( b , a % b ) bx+(a \% b)y= \gcd(b,a \% b) bx+(a%b)y=gcd(b,a%b)
的解

很明显,这是一个递归,那么跳出条件是什么呢?
b = 0 b=0 b=0 时,一定有一组解
x = 1 , y = 0 x=1,y=0 x=1,y=0 满足
a x = g c d ( a , 0 ) ax=gcd(a,0) ax=gcd(a,0)
注:
g c d ( 0 , k ) = k ( k ∈ Z ) gcd(0,k)=k(k\in Z) gcd(0,k)=k(kZ)

代码:

void exgcd(ll a,ll b,ll &x,ll &y)
{
	if(!b)
	{
		x=1,y=0;
      		return;
	}
	else
	{
		int tmp=x;
      		x=y;
            	y=tmp+(a/b)*y
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值