数学 - 微积分及相关(持续更新)

P1 求导

导数的四则运算

加法法则

( f ( x ) + g ( x ) ) ′ = f ′ ( x ) + g ′ ( x ) (f(x)+g(x))'=f'(x)+g'(x) (f(x)+g(x))=f(x)+g(x)

证明:

( f ( x ) + g ( x ) ) ′ = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x + Δ x ) + g ( x + Δ x ) − f ( x ) − g ( x ) Δ x = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x + g ( x + Δ x ) − g ( x ) Δ x = f ′ ( x ) + g ′ ( x ) \begin{aligned} (f(x)+g(x))' &=\lim_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}\\ &=\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)+g(x+\Delta x)-f(x)-g(x)}{\Delta x}\\ &=\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}+\frac{g(x+\Delta x)-g(x)}{\Delta x}\\ &=f'(x)+g'(x) \end{aligned} (f(x)+g(x))=Δx0limΔxΔy=Δx0limΔxf(x+Δx)+g(x+Δx)f(x)g(x)=Δx0limΔxf(x+Δx)f(x)+Δxg(x+Δx)g(x)=f(x)+g(x)

证毕.

减法法则

( f ( x ) − g ( x ) ) ′ = f ′ ( x ) − g ′ ( x ) (f(x)-g(x))'=f'(x)-g'(x) (f(x)g(x))=f(x)g(x)

与加法证法相似.

证:
( f ( x ) − g ( x ) ) ′ = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x + Δ x ) − g ( x + Δ x ) − f ( x ) + g ( x ) Δ x = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x − g ( x + Δ x ) − g ( x ) Δ x = f ′ ( x ) − g ′ ( x ) \begin{aligned} (f(x)-g(x))' &=\lim_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}\\ &=\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-g(x+\Delta x)-f(x)+g(x)}{\Delta x}\\ &=\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}-\frac{g(x+\Delta x)-g(x)}{\Delta x}\\ &=f'(x)-g'(x) \end{aligned} (f(x)g(x))=Δx0limΔxΔy=Δx0limΔxf(x+Δx)g(x+Δx)f(x)+g(x)=Δx0limΔxf(x+Δx)f(x)Δxg(x+Δx)g(x)=f(x)g(x)

证毕.

乘法法则

( f ( x ) g ( x ) ) ′ = f ( x ) g ′ ( x ) + f ′ ( x ) g ( x ) (f(x)g(x))'=f(x)g'(x)+f'(x)g(x) (f(x)g(x))=f(x)g(x)+f(x)g(x)

证:

( f ( x ) g ( x ) ) ′ = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x + Δ x ) − f ( x ) g ( x ) Δ x = lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x + Δ x ) + f ( x ) g ( x + Δ x ) − f ( x ) g ( x + Δ x ) − f ( x ) g ( x ) Δ x = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x g ( x + Δ x ) + lim ⁡ Δ x → 0 g ( x + Δ x ) − g ( x ) Δ x f ( x ) = f ′ ( x ) g ( x ) + g ′ ( x ) f ( x ) \begin{aligned} (f(x)g(x))' &=\lim_{\Delta x\rightarrow 0}\frac{\Delta{y}}{\Delta{x}}\\ &=\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)g(x+\Delta x)-f(x)g(x)}{\Delta x}\\ &=\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)g(x+\Delta x)+f(x)g(x+\Delta x)-f(x)g(x+\Delta x)-f(x)g(x)}{\Delta x}\\ &=\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}g(x+\Delta x)+\lim_{\Delta x\rightarrow 0}\frac{g(x+\Delta x)-g(x)}{\Delta x}f(x)\\ &=f'(x)g(x)+g'(x)f(x) \end{aligned} (f(x)g(x))=Δx0limΔxΔy=Δx0limΔxf(x+Δx)g(x+Δx)f(x)g(x)=Δx0limΔxf(x+Δx)g(x+Δx)+f(x)g(x+Δx)f(x)g(x+Δx)f(x)g(x)=Δx0limΔxf(x+Δx)f(x)g(x+Δx)+Δx0limΔxg(x+Δx)g(x)f(x)=f(x)g(x)+g(x)f(x)

证毕.

除法法则

( f ( x ) g ( x ) ) ′ = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) (\frac{f(x)}{g(x)})'=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} (g(x)f(x))=g2(x)f(x)g(x)f(x)g(x)

证明:

( f ( x ) g ( x ) ) ′ = ( f ( x ) 1 g ( x ) ) ′ = f ( x ) ′ g ( x ) + f ( x ) ( 1 g ( x ) ) ′ \begin{aligned} (\frac{f(x)}{g(x)})' &=(f(x)\frac{1}{g(x)})'\\ &=\frac{f(x)'}{g(x)}+f(x)(\frac{1}{g(x)})' \end{aligned} (g(x)f(x))=(f(x)g(x)1)=g(x)f(x)+f(x)(g(x)1)

又因为:

( 1 g ( x ) ) ′ = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 1 g ( x + Δ x ) − 1 g ( x ) Δ x = lim ⁡ Δ x → 0 g ( x ) − g ( x + Δ x ) g ( x ) g ( x + Δ x ) Δ x = lim ⁡ Δ x → 0 g ( x ) − g ( x + Δ x ) Δ x lim ⁡ Δ x → 0 1 g ( x ) g ( x + Δ x ) = − g ′ ( x ) 1 g 2 ( x ) = − g ′ ( x ) g 2 ( x ) \begin{aligned} (\frac{1}{g(x)})' &=\lim_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}\\ &=\lim_{\Delta x\rightarrow 0}\frac{\frac{1}{g(x+\Delta x)}-\frac{1}{g(x)}}{\Delta x}\\ &=\lim_{\Delta x\rightarrow 0}\frac{\frac{g(x)-g(x+\Delta x)}{g(x)g(x+\Delta x)}}{\Delta x}\\ &=\lim_{\Delta x\rightarrow 0}\frac{g(x)-g(x+\Delta x)}{\Delta x}\lim_{\Delta x\rightarrow 0}\frac{1}{g(x)g(x+\Delta x)}\\ &=-g'(x)\frac{1}{g^2(x)}\\ &=-\frac{g'(x)}{g^2(x)} \end{aligned} (g(x)1)=Δx0limΔxΔy=Δx0limΔxg(x+Δx)1g(x)1=Δx0limΔxg(x)g(x+Δx)g(x)g(x+Δx)=Δx0limΔxg(x)g(x+Δx)Δx0limg(x)g(x+Δx)1=g(x)g2(x)1=g2(x)g(x)

代入得:
( f ( x ) g ( x ) ) ′ = f ( x ) ′ g ( x ) + f ( x ) ( 1 g ( x ) ) ′ = f ( x ) ′ g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) = f ( x ) ′ g ( x ) g 2 ( x ) − g ′ ( x ) f ( x ) g 2 ( x ) = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) \begin{aligned} (\frac{f(x)}{g(x)})' &=\frac{f(x)'}{g(x)}+f(x)(\frac{1}{g(x)})'\\ &=\frac{f(x)'}{g(x)}-f(x)\frac{g'(x)}{g^2(x)}\\ &=\frac{f(x)'g(x)}{g^2(x)}-\frac{g'(x)f(x)}{g^2(x)}\\ &=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} \end{aligned} (g(x)f(x))=g(x)f(x)+f(x)(g(x)1)=g(x)f(x)f(x)g2(x)g(x)=g2(x)f(x)g(x)g2(x)g(x)f(x)=g2(x)f(x)g(x)f(x)g(x)

证毕.


多项式求导

给出 n n n 次多项式函数 f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0 f(x)=anxn+an1xn1++a1x+a0 ,求其导数 f ′ ( x ) f'(x) f(x) .

给出公式:

f ′ ( x ) = ∑ k = 1 n k a k x k − 1 f'(x)=\sum_{k=1}^nka_kx^{k-1} f(x)=k=1nkakxk1

证:

F ( x ) = a n x n F(x)=a_nx^n F(x)=anxn,那么:

F ′ ( x ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 F ( x + Δ x ) − F ( x ) Δ x = a lim ⁡ Δ x → 0 ( x + Δ x ) n − x n Δ x = a lim ⁡ Δ x → 0 ∑ k = 0 n ( C n k x k Δ x n − k ) − x n Δ x = a lim ⁡ Δ x → 0 ∑ k = 0 n − 1 ( C n k x k Δ x n − k ) Δ x = a lim ⁡ Δ x → 0 ∑ k = 0 n − 2 ( C n k x k Δ x n − k ) + n x n − 1 Δ x Δ x = a lim ⁡ Δ x → 0 ∑ k = 0 n − 2 ( C n k x k Δ x n − k − 1 ) + n x n − 1 = n a x n − 1 \begin{aligned} F'(x) &=\lim_{\Delta x\rightarrow 0} \frac{\Delta y}{\Delta x}\\ &=\lim_{\Delta x\rightarrow 0} \frac{F(x+\Delta x)-F(x)}{\Delta x}\\ &=a\lim_{\Delta x\rightarrow 0} \frac{(x+\Delta x)^n-x^n}{\Delta x}\\ &=a\lim_{\Delta x\rightarrow 0} \frac{\sum_{k=0}^n(C_n^kx^k{\Delta x}^{n-k})-x^n}{\Delta x}\\ &=a\lim_{\Delta x\rightarrow 0} \frac{\sum_{k=0}^{n-1}(C_n^kx^k{\Delta x}^{n-k})}{\Delta x}\\ &=a\lim_{\Delta x\rightarrow 0} \frac{\sum_{k=0}^{n-2}(C_n^kx^k{\Delta x}^{n-k})+nx^{n-1}\Delta x}{\Delta x}\\ &=a\lim_{\Delta x\rightarrow 0} {\sum_{k=0}^{n-2}(C_n^kx^k{\Delta x}^{n-k-1})+nx^{n-1}}\\ &=nax^{n-1} \end{aligned} F(x)=Δx0limΔxΔy=Δx0limΔxF(x+Δx)F(x)=aΔx0limΔx(x+Δx)nxn=aΔx0limΔxk=0n(CnkxkΔxnk)xn=aΔx0limΔxk=0n1(CnkxkΔxnk)=aΔx0limΔxk=0n2(CnkxkΔxnk)+nxn1Δx=aΔx0limk=0n2(CnkxkΔxnk1)+nxn1=naxn1

所以:
f ( x ) ′ = ( a n x n ) ′ + ( a n − 1 x n − 1 ) ′ + ⋯ + ( a 1 x ) ′ = ∑ k = 1 n k a k x k − 1 f(x)'=(a_nx^n)'+(a_{n-1}x^{n-1})'+\cdots+(a_1x)'=\sum_{k=1}^nka_kx^{k-1} f(x)=(anxn)+(an1xn1)++(a1x)=k=1nkakxk1

证毕.


反比例函数求导

f ( x ) = a x f(x)=\frac{a}{x} f(x)=xa,求其导数 f ′ ( x ) f'(x) f(x).

给出公式:

f ′ ( x ) = − a x 2 f'(x)=-\frac{a}{x^2} f(x)=x2a

注:反比例函数即为多项式求导中 n n n − 1 -1 1 的情况,但我们还是单独证明一下。

证:

f ′ ( x ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 a x + Δ x − a x Δ x = a lim ⁡ Δ x → 0 − Δ x ( x + Δ x ) x Δ x = − a lim ⁡ Δ x → 0 1 ( x + Δ x ) x = − a x 2 \begin{aligned} f'(x) &=\lim_{\Delta x\rightarrow 0} \frac{\Delta y}{\Delta x}\\ &=\lim_{\Delta x\rightarrow 0} \frac{\frac{a}{x+\Delta x}-\frac{a}{x}}{\Delta x}\\ &=a\lim_{\Delta x\rightarrow 0} \frac{\frac{-\Delta x}{(x+\Delta x)x}}{\Delta x}\\ &=-a\lim_{\Delta x\rightarrow 0}\frac{1}{(x+\Delta x)x}\\ &=-\frac{a}{x^2} \end{aligned} f(x)=Δx0limΔxΔy=Δx0limΔxx+Δxaxa=aΔx0limΔx(x+Δx)xΔx=aΔx0lim(x+Δx)x1=x2a

证毕.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值