- 博客(2)
- 收藏
- 关注
原创 课前准备:
课前准备: 1、写一个插入排序的函数,即输入一个数组,完成排序 #include<iostream> using namespace std; void select_sort(double a[], int n) //由小到大排序 { int i, j, k ; double t; for (int i = 0; i < n-1; i++) { k = i; for (j = i + 1; j < n; j++) if (a[j] < a[k]) k =
2021-08-30 13:13:16 106
原创 归纳法证明:
归纳法证明: 12+22+32+......+n2=n(2n+1)(n+1)6 1^2+2^2+3^2+......+n^2=\frac{n(2n+1)(n+1)}{6} 12+22+32+......+n2=6n(2n+1)(n+1) 证明过程如下: 令n=1,则 12=16×3×2=1 1^2=\frac{1}{6}\times3\times2=1 12=61×3×2=1 可得:n=1时,公式成立; 令n=k(k>1)时成立,即 12+22+32+......+k2=k(2k+1)(k+1)6
2021-07-30 16:29:15 211
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人