自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 课前准备:

课前准备: 1、写一个插入排序的函数,即输入一个数组,完成排序 #include<iostream> using namespace std; void select_sort(double a[], int n) //由小到大排序 { int i, j, k ; double t; for (int i = 0; i < n-1; i++) { k = i; for (j = i + 1; j < n; j++) if (a[j] < a[k]) k =

2021-08-30 13:13:16 106

原创 归纳法证明:

归纳法证明: 12+22+32+......+n2=n(2n+1)(n+1)6 1^2+2^2+3^2+......+n^2=\frac{n(2n+1)(n+1)}{6} 12+22+32+......+n2=6n(2n+1)(n+1)​ 证明过程如下: 令n=1,则 12=16×3×2=1 1^2=\frac{1}{6}\times3\times2=1 12=61​×3×2=1 可得:n=1时,公式成立; 令n=k(k>1)时成立,即 12+22+32+......+k2=k(2k+1)(k+1)6

2021-07-30 16:29:15 211

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除