归纳法证明:

归纳法证明:
1 2 + 2 2 + 3 2 + . . . . . . + n 2 = n ( 2 n + 1 ) ( n + 1 ) 6 1^2+2^2+3^2+......+n^2=\frac{n(2n+1)(n+1)}{6} 12+22+32+......+n2=6n(2n+1)(n+1)
证明过程如下:

令n=1,则
1 2 = 1 6 × 3 × 2 = 1 1^2=\frac{1}{6}\times3\times2=1 12=61×3×2=1
可得:n=1时,公式成立;

令n=k(k>1)时成立,即
1 2 + 2 2 + 3 2 + . . . . . . + k 2 = k ( 2 k + 1 ) ( k + 1 ) 6 1^2+2^2+3^2+......+k^2=\frac{k(2k+1)(k+1)}{6} 12+22+32+......+k2=6k(2k+1)(k+1)
则n=k+1时,
1 2 + 2 2 + 3 2 + . . . . . . + k 2 + ( k + 1 ) 2 = k ( 2 k + 1 ) ( k + 1 ) 6 + ( k + 1 ) 2 = 1 6 [ k ( 2 k + 1 ) ( k + 1 ) + 6 ( k + 1 ) 2 ] = 1 6 [ ( k + 1 ) ( 2 k 2 + k ) + 6 ( k + 1 ) 2 ] = 1 6 [ ( k + 1 ) ( 2 k 2 + k + 6 k + 6 ) ] = 1 6 ( k + 1 ) ( 2 k 2 + 7 k + 6 ) = 1 6 ( k + 1 ) ( 2 k + 3 ) ( k + 2 ) = 1 6 ( k + 1 ) × [ 2 ( k + 1 ) + 1 ] × [ ( k + 1 ) + 1 ] \begin{aligned} 1^2+2^2+3^2+......+k^2+(k+1)^2&= \frac{k(2k+1)(k+1)}{6}+(k+1)^2 \\&=\frac{1}{6}[k(2k+1)(k+1)+6(k+1)^2] \\&=\frac{1}{6}[(k+1)(2k^2+k)+6(k+1)^2] \\&=\frac{1}{6}[(k+1)(2k^2+k+6k+6)] \\&=\frac{1}{6}(k+1)(2k^2+7k+6) \\&=\frac{1}{6}(k+1)(2k+3)(k+2) \\&=\frac{1}{6}(k+1)\times[2(k+1)+1]\times[(k+1)+1] \end{aligned} 12+22+32+......+k2+(k+1)2=6k(2k+1)(k+1)+(k+1)2=61[k(2k+1)(k+1)+6(k+1)2]=61[(k+1)(2k2+k)+6(k+1)2]=61[(k+1)(2k2+k+6k+6)]=61(k+1)(2k2+7k+6)=61(k+1)(2k+3)(k+2)=61(k+1)×[2(k+1)+1]×[(k+1)+1]
可得:n=k+1时,公式成立

综上所述,可证对任意的正整数n,公式成立。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值