归纳法证明:
1
2
+
2
2
+
3
2
+
.
.
.
.
.
.
+
n
2
=
n
(
2
n
+
1
)
(
n
+
1
)
6
1^2+2^2+3^2+......+n^2=\frac{n(2n+1)(n+1)}{6}
12+22+32+......+n2=6n(2n+1)(n+1)
证明过程如下:
令n=1,则
1
2
=
1
6
×
3
×
2
=
1
1^2=\frac{1}{6}\times3\times2=1
12=61×3×2=1
可得:n=1时,公式成立;
令n=k(k>1)时成立,即
1
2
+
2
2
+
3
2
+
.
.
.
.
.
.
+
k
2
=
k
(
2
k
+
1
)
(
k
+
1
)
6
1^2+2^2+3^2+......+k^2=\frac{k(2k+1)(k+1)}{6}
12+22+32+......+k2=6k(2k+1)(k+1)
则n=k+1时,
1
2
+
2
2
+
3
2
+
.
.
.
.
.
.
+
k
2
+
(
k
+
1
)
2
=
k
(
2
k
+
1
)
(
k
+
1
)
6
+
(
k
+
1
)
2
=
1
6
[
k
(
2
k
+
1
)
(
k
+
1
)
+
6
(
k
+
1
)
2
]
=
1
6
[
(
k
+
1
)
(
2
k
2
+
k
)
+
6
(
k
+
1
)
2
]
=
1
6
[
(
k
+
1
)
(
2
k
2
+
k
+
6
k
+
6
)
]
=
1
6
(
k
+
1
)
(
2
k
2
+
7
k
+
6
)
=
1
6
(
k
+
1
)
(
2
k
+
3
)
(
k
+
2
)
=
1
6
(
k
+
1
)
×
[
2
(
k
+
1
)
+
1
]
×
[
(
k
+
1
)
+
1
]
\begin{aligned} 1^2+2^2+3^2+......+k^2+(k+1)^2&= \frac{k(2k+1)(k+1)}{6}+(k+1)^2 \\&=\frac{1}{6}[k(2k+1)(k+1)+6(k+1)^2] \\&=\frac{1}{6}[(k+1)(2k^2+k)+6(k+1)^2] \\&=\frac{1}{6}[(k+1)(2k^2+k+6k+6)] \\&=\frac{1}{6}(k+1)(2k^2+7k+6) \\&=\frac{1}{6}(k+1)(2k+3)(k+2) \\&=\frac{1}{6}(k+1)\times[2(k+1)+1]\times[(k+1)+1] \end{aligned}
12+22+32+......+k2+(k+1)2=6k(2k+1)(k+1)+(k+1)2=61[k(2k+1)(k+1)+6(k+1)2]=61[(k+1)(2k2+k)+6(k+1)2]=61[(k+1)(2k2+k+6k+6)]=61(k+1)(2k2+7k+6)=61(k+1)(2k+3)(k+2)=61(k+1)×[2(k+1)+1]×[(k+1)+1]
可得:n=k+1时,公式成立
综上所述,可证对任意的正整数n,公式成立。