一、算法效率
算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作空间复杂度。时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
二、时间复杂度
定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
2.1 大O渐进表示法 O( )->是一个函数渐进的数学符号
1、用常数1取代运行时间中的所有加法常数。2、在修改后的运行次数函数中,只保留最高阶项。3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
例子
void func1(int N){
int count = 0;
for (int i = 0; i < N ; i++) {
for (int j = 0; j < N ; j++) {
count++;
}
}
for (int k = 0; k < 2 * N ; k++) {
count++;
}
int M = 10;
while ((M--) > 0) {
count++;
}
最内层循环N次,最外层也是N次,所以为N^2。for循环为2N,whiile循环为10
N^2+2N+10, 当N变大的时候,最终由N^2主导大小,其他可忽略 表示为O(N^2)。
2.2 算法复杂度三种情况
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
例子
void func3(int N, int M) {
int count = 0;
for (int k = 0; k < M; k++) {
count++; }
for (int k = 0; k < N ; k++) {
count++; }
System.out.println(count);
}
O(M+N)
2.3 常用时间复杂度
重点掌握O(1) O(N) O(N^2)O(logn) O(nlogn)
折纸算法:任意算法,若是不断/任意数字,最终等于0或者1,这个算法的执行次数就是O(Iogn)
快速排序:20世纪最伟大的算法之一,复杂度O(nlogn)
递归函数:把这个递归函数展开,看一下递归的次数与变量N的关系,如果是N*(N-1)*(N-2),那就是O(N)。
三、空间复杂度
理解:所谓的空间复杂度指的是算法在执行过程中"额外"开辟的内存空间,每次函数的调用过程,就对应一个函数的"栈帧"在栈中的入栈过程,函数调用几次,就需要开辟多少个栈帧空间。
注意
外部传入的数组,不是我们算法自己产生的数组,不算空间复杂度的—部分。
主要看有没有new一个数组,一般对象也是O(1)
3.1 常用空间复杂度
99%就两种O(1)和O(N)
例子
void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
Swap(array, i - 1, i);
sorted = false;
}
}
if (sorted == true) {
break;
}
}
}
int[] fibonacci(int n) {
long[] fibArray = new long[n + 1];
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; i++) {
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray; }
动态开辟了N个额外空间,空间复杂度为O(N)
,