P3368 【模板】树状数组 2
提交57.19k
通过30.25k
时间限制1.00s
题目描述
如题,已知一个数列,你需要进行下面两种操作:
-
将某区间每一个数数加上 xx;
-
求出某一个数的值。
输入格式
第一行包含两个整数 NN、MM,分别表示该数列数字的个数和操作的总个数。
第二行包含 NN 个用空格分隔的整数,其中第 ii 个数字表示数列第 ii 项的初始值。
接下来 MM 行每行包含 22 或 44个整数,表示一个操作,具体如下:
操作 11: 格式:1 x y k
含义:将区间 [x,y][x,y] 内每个数加上 kk;
操作 22: 格式:2 x
含义:输出第 xx 个数的值。
输出格式
输出包含若干行整数,即为所有操作 22 的结果。
输入输出样例
输入 #1复制
5 5 1 5 4 2 3 1 2 4 2 2 3 1 1 5 -1 1 3 5 7 2 4
输出 #1复制
6 10
说明/提示
样例 1 解释:
故输出结果为 6、10。
数据规模与约定
对于 30%30% 的数据:N≤8,M≤10N≤8,M≤10;
对于 70%70% 的数据:N≤10000,M≤10000N≤10000,M≤10000;
对于 100%100% 的数据:1≤N,M≤5000001≤N,M≤500000,1≤x,y≤n1≤x,y≤n,保证任意时刻序列中任意元素的绝对值都不大于 230230。
/*
*@Author: GuoJinlong
*@Language: C++
*/
//#include <bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<string>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<list>
#include<set>
#include<iomanip>
#include<cstring>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<cassert>
#include<sstream>
#include<algorithm>
using namespace std;
const int mod=1e9+7;
typedef long long ll;
#define ls (p<<1)
#define rs (p<<1|1)
#define mid (l+r)/2
#define over(i,s,t) for(register long long i=s;i<=t;++i)
#define lver(i,t,s) for(register long long i=t;i>=s;--i)
const int MAXN = 305;
const int INF = 0x3f3f3f3f;
const int N=5e4+7;
const int maxn=1e5+5;
const double EPS=1e-10;
const double Pi=3.1415926535897;
//inline double max(double a,double b){
// return a>b?a:b;
//}
//inline double min(double a,double b){
// return a<b?a:b;
//}
int xd[8] = {0, 1, 0, -1, 1, 1, -1, -1};
int yd[8] = {1, 0, -1, 0, -1, 1, -1, 1};
//void Fire(){
// queue<node> p;
// p.push({fx,fy,0});
// memset(fire, -1, sizeof(fire));
// fire[fx][fy]=0;
// while(!p.empty()){
// node temp=p.front();
// p.pop();
// for(int i=0;i<8;i++){
// int x=temp.x+xd[i];
// int y=temp.y+yd[i];
// if(x<0||x>=n||y<0||y>=m||fire[x][y]!=-1){
// continue;
// }
// fire[x][y]=temp.val+1;
// p.push({x,y,temp.val+1});
// }
// }
//}
//int bfs(){
// queue<node> p;
// memset(vis, 0, sizeof(vis));
// p.push({sx,sy,0});
// while (!p.empty()) {
// node temp=p.front();
// vis[temp.x][temp.y]=1;
// p.pop();
// for(int i=0;i<4;i++){
// int x=temp.x+xd[i];
// int y=temp.y+yd[i];
// if(x<0||x>=n||y<0||y>=m) continue;
// if(x==ex&&y==ey&&temp.val+1<=fire[x][y]) return temp.val+1;
// if(vis[x][y]||temp.val+1>=fire[x][y]||a[x][y]=='#') continue;
// p.push({x,y,temp.val+1});
// }
// }
// return -1;
//}
//一维哈希
//int n;
//string s;
//int bas=131;
//typedef unsigned long long ull;
//const ull mod1=100001651;
//ull a[100010];
//ull Hash(string s){
// ll ans=0;
// for(int i=0;i<s.size();i++){
// ans*=bas;
// ans+=int(s[i]);
// ans%=mod1;
// }
// return ans;
//}
//二维哈希
//using lom=unsigned long long ;
//const lom bas1=131,bas2=233;
//const int M=505;
//int n,m;
//char a[M][M];
//lom _hash[M][M];
//lom p1[M],p2[M];
//
//
//void init(){
// p1[0]=1;
// p2[0]=1;
// for(int i=1;i<=505;i++){
// p1[i]=p1[i-1]*bas1;
// p2[i]=p2[i-1]*bas2;
//
// }
//}
//void Hash(){
// _hash[0][0]=_hash[0][1]=_hash[1][0]=0;
// for(int i=1;i<=n;i++){ //前缀和
// for(int j=1;j<=m;j++){
// _hash[i][j]=_hash[i][j-1]*bas1+a[i][j]-'a';
// }
// }
// for(int i=1;i<=n;i++){ //二维前缀和
// for(int j=1;j<=m;j++){
// _hash[i][j]+=_hash[i-1][j]*bas2;
// }
// }
//
//}
//int pre[1010];
//int in[1010];
//int post[1010];
//int k;
//struct node{
// int value;
// node *l,*r;
// node (int value=0,node *l=NULL,node *r=NULL):value(value),l(l),r(r){}
//};
//void builttree(int l,int r,int &t,node * &root){
// int flag=-1;
// for(int i=l;i<=r;i++){
// if(in[i]==pre[t]){
// flag=i;
// break;
// }
// }
// if(flag==-1) return;
// root=new node(in[flag]);
// t++;
// if(flag>l) builttree(l,flag-1,t,root->l);
// if(flag<r) builttree(flag+1,r,t,root->r);
//
//}
//void preorder(node *root){
// if(root!=NULL)
// {
// post[k++]=root->value;
// preorder(root->l);
// preorder(root->r);
//
// }
//}
//void inorder(node *root){
// if(root!=NULL)
// {
// inorder(root->l);
// post[k++]=root->value;
// inorder(root->r);
//
// }
//}
//void postorder(node *root){
// if(root!=NULL)
// {
// postorder(root->l);
// postorder(root->r);
// post[k++]=root->value;
// }
//}
int n,m;
ll num[10000010];
int lowbit(int t) //lowbit()函数用来取一个二进制最低位的一与后边的0组成的数
{
return t&(-t);
}
ll getsum(int x){ //求和
ll sum=0;
while (x) {
sum+=num[x];
x-=lowbit(x);
}
return sum;
}
void data(int x,int k){ //维护差分数组
while (x<=n) {
num[x]+=k;
x+=lowbit(x);
}
}
int main(){
cin>>n>>m;
int t=0;
int x;
for(int i=1;i<=n;i++){
cin>>x;
data(i,x-t);
t=x;
}
while (m--) {
cin>>x;
if(x==1){
int l,r,y;
cin>>l>>r>>y; //l位和r+1位变
data(l,y);
data(r+1,-y);
}
else{
cin>>x;
cout<<getsum(x)<<endl;
}
}
return 0;
}