算法竞赛入门经典 每日一题(郊区春游)

郊区春游

题号:NC16122
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld

题目描述 

今天春天铁子的班上组织了一场春游,在铁子的城市里有n个郊区和m条无向道路,第i条道路连接郊区Ai和Bi,路费是Ci。经过铁子和顺溜的提议,他们决定去其中的R个郊区玩耍(不考虑玩耍的顺序),但是由于他们的班费紧张,所以需要找到一条旅游路线使得他们的花费最少,假设他们制定的旅游路线为V1, V2 ,V3 ... VR,那么他们的总花费为从V1到V2的花费加上V2到V3的花费依次类推,注意从铁子班上到V1的花费和从VR到铁子班上的花费是不需要考虑的,因为这两段花费由学校报销而且我们也不打算告诉你铁子学校的位置。

输入描述:

第一行三个整数n, m, R(2 ≤ n ≤ 200, 1 ≤ m ≤ 5000, 2 ≤ R ≤ min(n, 15))。
第二行R个整数表示需要去玩耍的郊区编号。
以下m行每行Ai, Bi, Ci(1 ≤ Ai, Bi ≤ n, Ai ≠ Bi, Ci ≤ 10000)
保证不存在重边。

输出描述:

输出一行表示最小的花费

示例1

输入

复制

4 6 3
2 3 4
1 2 4
2 3 3
4 3 1
1 4 1
4 2 2
3 1 6

输出

复制

3

这道题的主要思路就是:

先求每个点之间的最短路 用floyd

然后用状压来枚举各种情况

const int MAX=1000010;
int dp[100010][16];
int dis[1010][1010];
int n,m,R;
int r[MAX];
int main(){
    cin>>n>>m>>R;
    mms(dis,INF);
    mms(dp,INF);
    for(int i=0;i<R;i++){
        cin>>r[i];
    }
    for(int i=0;i<m;i++){
        int a,b,c;
        cin>>a>>b>>c;
        dis[a][b]=c;
        dis[b][a]=c;
    }
    for(int i=0;i<R;i++){
        dp[1<<i][i]=0;
    }
//floyd求最短路
    for(int k=1;k<=n;k++){
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                if(dis[i][j]>dis[i][k]+dis[k][j])
                    dis[i][j]=dis[i][k]+dis[k][j];
            }
        }
    }
    int x,y;
    for(int i=0;i<(1<<R);i++){//枚举状态
        for(int j=0;j<R;j++){ //枚举起点
            if(!(i&(1<<j))) continue; //没有到过起点 con
            x=r[j];
            for(int k=0;k<R;k++){ //枚举下一步的点
                if(i&(1<<k)){//去过 con
                    continue;
                }
                y=r[k];
                dp[i|(1<<k)][k]=min(dp[i|(1<<k)][k],dp[i][j]+dis[x][y]);
            }
        }
    }
    int ans=INF;
    for(int i=0;i<R;i++){
        ans=min(ans,dp[(1<<R)-1][i]);//得出result
    }
    cout<<ans<<endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郭晋龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值