在科技的聚光灯下,人工智能的每一次飞跃都引人注目。然而,当我们将目光投向这些光芒四射的AI大模型时,是否会察觉到其背后隐藏的挑战与未知?从深度语义理解到跨模态知识融合,这些看似无所不能的模型,其实正站在新的起点上,面对更为复杂与多样的现实世界。
国内AI大模型概览
本文将为你揭示2024年国内人工智能领域的璀璨星空——各大企业的AI大模型。它们如同璀璨星辰,不仅在技术的天空中交相辉映,更在实际应用中点亮了产业变革的道路。
具体模型分析
Kimi智能助手
则是一个功能全面的智能助手,它整合了多种实用功能,为用户提供从日常任务管理到智能推荐的全方位服务。其高效性和多功能性使其成为用户生活中不可或缺的智能伙伴。
百度篇幅AI
用户可以轻松实现对超大量、超多格式、超长内容的文件进行深入理解、精准总结与即时问答。更为出色的是,该应用还支持超长篇幅的长文生成、深度编辑以及多模态的自由创作,极大地丰富了用户的内容创作手段。
360智脑
360智脑模型以其多模态、多语言处理的综合实力赢得了广泛关注。作为360鸿图大模型的重要组成部分,智脑模型不仅在文本生成、语言理解等方面表现出色,还积极与各行业合作伙伴共同打造行业大模型,推动各行各业的智能化转型与发展。
百度文心一言
文心一言作为百度在AI领域的集大成者,基于ERNIE大模型技术,以其卓越的深度语义理解与生成能力,成为了用户解决问题、获取知识的得力助手。同时,通过不断学习和训练,文心一言正持续进化,以满足日益复杂多变的用户需求。
阿里云通义千问
通义千问以超大规模的语言模型为基石,实现了多轮对话、文案创作、逻辑推理等多样化功能。其跨模态、多语言支持的能力更是为用户提供了全方位的交互体验。在行业应用中,通义千问正助力企业实现智能化转型与升级。
ChatGLMS
ChatGLMS模型作为智谱AI与清华大学合作的产物,在预训练方法和性能提升方面展现出了独特的优势。其多阶段增强预训练策略不仅提高了模型性能还降低了微调成本。ChatGLMS模型在自然语言问答、对话系统等多个领域均有广泛应用前景。
腾讯混元
腾讯混元大模型凭借其高性能与低能耗特点,在行业内独树一帜。同时,腾讯云的技术升级
也进一步巩固了其在AI云服务市场的领先地位。混元大模型的基础模型支持超长文本输入,且具备一定的推理总结能力,为AI服务的智能化、精细化提供了有力支撑。
字节跳动豆包
豆包模型作为字节跳动在AI领域的创新之作,基于Transformer架构展现了强大的自然语言处理与生成能力。它能够准确理解用户意图,生成流畅自然的文本内容,广泛应用于智能客服、智能家居等多个场景。随着持续优化,豆包模型正不断提升其性能和实用性。
华为盘古
华为盘古大模型在NLP、CV、科学计算三大领域均取得了显著突破。通过提供精准、自然的语言处理服务和图像识别、科学计算等能力,盘古大模型正为各行各业的数字化转型注入强大动力。华为的技术创新和研发实力确保了盘古大模型在未来将持续保持领先地位。
商汤商量
商量大模型以其超大规模参数和跨模态理解能力著称。在智能客服、智能家居等多个领域均展现出广泛的应用前景。商汤科技在AI领域的深厚积累和研发投入确保了商量大模型在未来将持续迭代升级,为用户提供更加智能化的服务体验。
科大讯飞星火
星火认知大模型作为科大讯飞在AI领域的最新成果,以中文为核心实现了跨语言理解和多领域知识覆盖。其在文本生成、语言理解、知识问答等方面的强大能力正逐步推动产业数字化、智能化升级。科大讯飞对AI技术的持续探索和创新确保了星火认知大模型在未来将保持领先地位。
百川大模型
百川大模型融合了意图理解、信息检索以及强化学习技术,在知识问答和文本创作领域表现出色。前搜狗公司CEO王小川的加持更是为百川大模型注入了强大的技术实力和市场潜力。未来,百川大模型有望在大型语言模型领域占据一席之地。
昆仑万维天工
天工模型作为昆仑万维发布的基座大模型被誉为“大模型时代的超级应用”。其4000亿参数的庞大规模和多元化AI生成能力满足了用户在文案创作、知识问答等多个方面的需求。天工模型的成功研发不仅体现了昆仑万维在AI领域的深厚底蕴还展示了其在推动人工智能技术应用方面的决心和实力。
澜舟科技孟子
孟子生成式大模型以其生成式可控的特点和多轮对话能力成为用户在特定场景中完成各种工作任务的得力助手。其在内容生成、语言理解、知识问答等方面的综合能力得到了市场的广泛认可。澜舟科技的技术实力和市场前景确保了孟子大模型在未来将持续引领行业发展潮流。
其他大模型概览
除了上述提到的大模型外还有紫东太初、知海图AI、言犀、网易AI等众多优秀的人工智能模型。它们各自拥有独特的优势和广泛的应用场景为AI领域的发展注入了新的活力和动力。
现状与展望
目前国内AI大模型正处于多元化、深度化的发展阶段。各大企业在技术研发和市场应用方面均取得了显著成果。未来随着技术的不断进步和应用场景的持续拓展AI大模型有望在更多领域发挥关键作用推动社会数字化、智能化进程加速前行。
结语
本文通过对2024年国内AI大模型的深入剖析旨在展现当前人工智能领域的最新动态与未来趋势。在科技的浪潮中我们期待着这些AI大模型能够带来更多惊喜与改变为社会发展和人类生活带来更多的便利与福祉。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。