一、2025年AI行业人才需求现状
1、薪资水平两极分化
- AI产品经理年薪普遍突破80万,顶尖人才可达150万以上;
- 大模型开发工程师月薪8-11万,年薪中位数超100万,架构师岗位年薪可达150万。
- 对比传统岗位(如Java开发、数据分析),AI岗位薪资溢价率超200%。
2、市场需求激增
- 大模型相关岗位需求年增长率超50%,复合型人才缺口达200万;
- 医疗、金融、教育等领域AI产品经理岗位激增300%。
3、技术迭代驱动就业革命
- 多模态大模型(如DeepSeek-V3)推动技术深水区,企业更倾向招聘既懂算法又懂业务的AI架构师;
- 行业应用层(如AI诊疗、智能制造)的智能化改造,催生“技术+场景”双栖人才需求。
二、AI产品经理 vs 大模型开发工程师:核心差异对比
三、转型策略与学习路径
1、AI产品经理:抢占商业化先机
核心学习模块:
- AI需求分析: 从20+行业真实案例库提炼可落地的AI场景;
- 交互设计: 掌握Midjourney式指令设计逻辑,降低用户使用门槛;
- 伦理风控: 规避数据隐私、算法偏见等合规风险。
转型优势:
文科/商科背景可跳过代码门槛,通过6个月系统培训实现薪资翻倍。
2、大模型开发工程师:攻克技术深水区
技术进阶路线:
- 基础层:Transformer源码解读与微调实战(推荐Llama3、DeepSeek开源模型);
- 进阶层:MoE架构优化、强化学习框架开发;
- 高阶层:千亿参数模型分布式训练与能耗优化。
职业壁垒:
需持续跟进SOTA论文(如arXiv日更技术报告),掌握CUDA编程等底层技术。
四、未来3年行业趋势预测
1、岗位分化加速
- AI产品经理将细分为垂直领域专家(如医疗AI、金融风控产品经理),薪资差距拉大至2-3倍;
- 大模型开发工程师面临全栈化要求,需同时掌握模型训练、部署、压缩全链路技能。
2、技术应用边界扩展
- 多模态大模型(文本/图像/音频融合)催生人机协作专家岗位,例如AI协同诊断师、智能驾驶交互设计师;
- 开源生态(如DeepSeek、Llama3)推动企业私有化部署需求,相关工程师年薪溢价率超30%。
五、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
数据支撑与行业洞察
- 中国AI大模型市场规模预计2025年突破495亿元,技术层岗位需求增速超150%;
- 头部企业校招数据显示,AI产品经理与开发工程师的投录比达200:1,竞争白热化。
- 少年此时不入局更待何时?