AI人工智能领域神经网络的技术挑战

AI人工智能领域神经网络的技术挑战

关键词:神经网络、技术挑战、过拟合、可解释性、数据依赖、计算资源、泛化能力

摘要:神经网络作为AI领域的核心技术,推动了图像识别、自然语言处理等领域的突破,但也面临诸多“成长的烦恼”。本文将以“小AI的成长故事”为线索,用通俗易懂的语言拆解神经网络在过拟合、可解释性、数据依赖、计算资源、泛化能力五大方向的技术挑战,结合代码示例、数学模型和实际场景,带读者理解这些挑战的本质及未来解决思路。


背景介绍

目的和范围

神经网络是AI的“大脑”,但它并非完美——就像一个天赋异禀却脾气古怪的学生,虽然能考高分(完成任务),但也会犯“死记硬背”(过拟合)、“说不清楚解题过程”(可解释性差)等错误。本文将聚焦神经网络发展中最核心的5大技术挑战,覆盖基础原理、数学模型、实战案例和未来趋势。

预期读者

  • 对AI感兴趣的大学生/开发者(想了解神经网络的“痛点”)
  • 技术管理者(需评估AI项目落地风险)
  • 普通爱好者(想用生活化案例理解复杂技术)

文档结构概述

本文将按照“故事引入→核心挑战拆解→数学与代码验证→实际场景映射→未来解法”的逻辑展开,重点讲解过拟合、可解释性、数据依赖、计算资源、泛化能力五大挑战,并提供可操作的解决思路。

术语表

  • 神经网络:模拟人脑神经元连接的计算模型,由输入层、隐藏层、输出层组成(类似“大脑神经突触”)。
  • 过拟合:模型在训练数据上表现完美,但遇到新数据就“翻车”(类似学生只背例题,考试变题型就不会)。
  • 可解释性:模型能“说清楚”决策依据(比如医生开处方时,能解释“为什么认为这是肿瘤”)。
  • 泛化能力:模型对未训练过的新数据的适应能力(类似学生学会“举一反三”)。
  • 梯度消失:深层网络训练时,误差无法有效传递到浅层(类似老师的话传到最后一排学生时,只剩模糊的声音)。

核心概念与联系:小AI的成长烦恼

故事引入:小AI的“考试翻车”事件

假设我们养了一个叫“小AI”的“学习机器人”,目标是让它学会识别“猫和狗”的图片。一开始,小AI表现很好:

  • 训练时(用1000张猫/狗图片学习):正确率99%!
  • 考试时(用100张新的猫/狗图片测试):正确率暴跌到60%!

为什么会这样?原来小AI在训练时“走偏了”——它记住了训练图片里的“特殊细节”(比如某张猫图背景有个红色杯子),而不是真正的“猫的特征”(尖耳朵、长胡须)。这就是神经网络最常见的“过拟合”问题。
但这只是小AI的第一个烦恼。随着它“学习”的内容越来越复杂(比如诊断疾病、驾驶汽车),更多问题暴露了:

  • 医生问:“你为什么认为这是肺癌?”小AI:“我也不知道,反正模型算出来的。”(可解释性差)
  • 要学习“识别鸟类”?必须给它100万张鸟的图片!少一张都学不会。(数据依赖)
  • 学习时需要占用整个机房的电脑,运行三天三夜才能完成训练。(计算资源需求高)
  • 把它从“识别城市街景”的任务,换到“识别乡村道路”,它又不会了。(泛化能力弱)

这些,就是神经网络发展中最核心的五大技术挑战。


核心概念解释(像给小学生讲故事)

挑战一:过拟合——小AI的“死记硬背”

过拟合就像学生只背老师上课的例题,考试时题目稍微变个数字或换个场景,就完全不会了。
比如:训练数据里的“猫”图片都有“红色背景”,小AI可能错误地认为“红色背景+动物=猫”,而不是“尖耳朵+长胡须=猫”。当测试数据里的猫是“蓝色背景”时,它就会认错。

挑战二:可解释性差——小AI的“黑箱秘密”

可解释性是指模型能“说清楚”自己的决策逻辑。比如医生用AI诊断疾病,需要AI回答:“你为什么认为这是肺癌?”如果AI只会说“我也不知道,反正模型算出来的”,医生就不敢用它的结论。
神经网络的隐藏层就像“黑箱”:输入一张图片,经过多层复杂计算后输出结果,但中间每一步“为什么这样算”,人类很难理解。

挑战三:数据依赖——小AI的“海量练习症”

神经网络就像一个“填鸭式学习”的学生:要学会一个技能,必须做海量的练习题(数据)。
比如:训练一个识别“猫”的模型,可能需要10万张猫的图片;训练一个能对话的AI(如ChatGPT),需要千亿级的文本数据。如果数据量不足,模型就会“学不会”;如果数据有偏差(比如猫的图片全是白色的),模型就会“学歪”。

挑战四:计算资源需求高——小AI的“豪华学习装备”

神经网络的训练需要大量的计算资源(GPU/TPU、内存、电力)。比如:

  • 训练一个基础的图像分类模型(如ResNet-50),需要8块GPU运行几小时;
  • 训练一个大语言模型(如GPT-3),需要上万块GPU运行几周,成本高达数百万美元。
    这就像小AI学习时,必须住在“豪华别墅”里,用“黄金做的笔”写字,普通“家庭”根本养不起。
挑战五:泛化能力弱——小AI的“换环境恐惧症”

泛化能力是指模型对“未训练过的新数据”的适应能力。比如:

  • 训练时用城市街景图片教AI识别“行人”,但AI到乡村道路上可能认不出穿传统服饰的行人;
  • 训练时用标准普通话教AI对话,AI可能听不懂方言或带有口音的表达。
    这就像一个在城市长大的孩子,第一次去农村,连“稻子和杂草”都分不清。

核心概念之间的关系(用小学生能理解的比喻)

五大挑战不是孤立的,它们像“多米诺骨牌”一样相互影响:

  • 数据依赖→过拟合:如果数据量太少(比如只给10张猫的图片),小AI只能“死记硬背”这些图片的细节(过拟合);
  • 计算资源→可解释性:为了弄清楚小AI的“黑箱”,需要额外的计算资源(比如用可解释性工具分析每一层的特征),但资源不足时,这一步就会被省略;
  • 数据质量→泛化能力:如果训练数据只包含“城市猫”(比如宠物猫),小AI可能学不会识别“农村猫”(比如流浪猫),导致泛化能力差;
  • 计算资源→数据依赖:为了缓解过拟合,需要更多数据,但收集和清洗海量数据需要大量计算资源(比如存储、标注)。

简单说:数据不够→小AI死记硬背(过拟合);资源不够→小AI说不清自己怎么学的(可解释性差);数据和资源都不够→小AI换个环境就不会了(泛化能力弱)。


核心概念原理和架构的文本示意图

神经网络的典型架构是“输入层→隐藏层→输出层”,每层包含多个神经元(类似大脑的神经细胞)。隐藏层的层数越多(深度神经网络),模型的“学习能力”越强,但也越容易出现:

  • 过拟合(记住训练数据的噪声);
  • 可解释性差(多层非线性变换导致逻辑难以追踪);
  • 计算资源需求高(每层都需要大量矩阵运算)。
输入层(图片像素) → 隐藏层1(边缘检测) → 隐藏层2(纹理识别) → 隐藏层3(整体形状) → 输出层(猫/狗概率)

Mermaid 流程图:挑战的相互影响

数据依赖
过拟合
计算资源
可解释性
泛化能力弱

核心算法原理 & 具体操作步骤

过拟合:数学原理与解决方法

数学本质:模型的“复杂度”超过了数据的“信息量”,导致模型拟合了数据中的“噪声”(非本质特征)。
用公式表示:假设真实规律是 ( y = f(x) + \epsilon )((\epsilon) 是噪声),过拟合的模型会错误地将 ( \epsilon ) 也拟合进去,得到 ( \hat{y} = f(x) + \epsilon + \delta )((\delta) 是模型额外添加的噪声)。

解决方法示例:正则化(Regularization)
正则化是给模型的“复杂度”加一个“惩罚项”,让模型倾向于选择更简单的参数。最常用的是L2正则化(权重衰减),公式为:
L = 交叉熵损失 + λ ⋅ 1 2 ∑ w 2 L = \text{交叉熵损失} + \lambda \cdot \frac{1}{2} \sum w^2 L=交叉熵损失+λ21w2
其中 (\lambda) 是正则化系数(控制惩罚力度),(w) 是模型权重。

Python代码示例(PyTorch实现L2正则化)

import torch
import torch.nn as nn
import torch.optim as optim

# 定义一个简单的神经网络
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(28*28, 128)  # 输入层(MNIST手写数字,28x28像素)
        self.fc2 = nn.Linear(128, 64)     # 隐藏层
        self.fc3 = nn.Linear(64, 10)      # 输出层(0-9数字)

    def forward(self, x):
        x = x.view(-1, 28*28)  # 展平像素
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 初始化模型和优化器(添加L2正则化)
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=0.001)  # weight_decay即L2正则化系数λ

# 训练循环(简化版)
for epoch in range(10):
    for data, target in train_loader:
        optimizer.zero_grad()
        output = model(data)
        loss = nn.CrossEntropyLoss()(output, target)
        loss.backward()
        optimizer.step()  # 优化器会自动添加L2惩罚项

可解释性:原理与工具

核心矛盾:神经网络的隐藏层通过非线性激活函数(如ReLU)进行特征变换,导致“输入→输出”的映射关系无法用简单的数学公式描述(比如“如果像素1是黑色,则输出猫”)。

解决思路示例:特征可视化与注意力机制

  • 特征可视化:通过反向传播,生成“最能激活某个神经元”的输入图像,从而理解该神经元“关注”什么特征(比如某个神经元可能对“猫的胡须”敏感)。
  • 注意力机制(Attention):在模型中显式计算“输入的哪些部分对输出最重要”。例如,在自然语言处理中,模型可以标出“这句话中哪些词对情感判断最关键”。

代码示例:用Grad-CAM可视化图像分类模型的注意力

from torchvision import models
import cv2
import numpy as np
from matplotlib import pyplot as plt

# 加载预训练的ResNet模型
model = models.resnet50(pretrained=True)
model.eval()

# 定义Grad-CAM所需的钩子(Hook),获取最后一层卷积的输出和梯度
features = []
grads = []
def hook_features(module, input, output):
    features.append(output)
def hook_grads(module, grad_input, grad_output):
    grads.append(grad_output[0])

# 注册钩子到最后一层卷积层(ResNet的layer4)
model.layer4.register_forward_hook(hook_features)
model.layer4.register_backward_hook(hook_grads)

# 输入一张测试图片(假设已预处理为Tensor)
img_tensor = ...  # 加载并预处理图片
output = model(img_tensor)

# 计算类别概率最大的类别
pred_class = output.argmax()

# 反向传播计算梯度
output[0, pred_class].backward()

# 计算Grad-CAM热力图
features = features[0].detach().cpu().numpy()  # 最后一层卷积的特征图(形状:[1, 2048, 7, 7])
grads = grads[0].detach().cpu().numpy()        # 梯度(形状相同)

# 对梯度求平均,得到每个特征图的权重
weights = np.mean(grads, axis=(2, 3))  # 形状:[1, 2048]
cam = np.sum(weights[0, :, np.newaxis, np.newaxis] * features[0], axis=0)  # 加权求和

# 归一化并生成热力图
cam = np.maximum(cam, 0)  # 只保留正贡献
cam = cam / cam.max()
cam = cv2.resize(cam, (224, 224))  #  resize到原图尺寸
heatmap = cv2.applyColorMap(np.uint8(255 * cam), cv2.COLORMAP_JET)

# 叠加原图和热力图
result = cv2.addWeighted(original_img, 0.5, heatmap, 0.5, 0)
plt.imshow(result)
plt.show()

通过这段代码,我们可以看到模型在识别图片时“重点关注”的区域(比如猫的头部),从而部分解释模型的决策逻辑。


数学模型和公式 & 详细讲解 & 举例说明

数据依赖:为什么神经网络需要海量数据?

数学本质:神经网络是“经验风险最小化”模型,需要通过大量数据估计真实数据分布 ( P(x,y) )。根据“大数定律”,数据量越大,模型对 ( P(x,y) ) 的估计越准确。

假设我们有一个二分类问题(猫/狗),真实分布中“猫的概率”是 ( p=0.5 )。如果只用2个样本训练(1猫1狗),模型可能错误地认为“所有图片都是猫或狗”;如果用10000个样本,模型对 ( p ) 的估计会接近0.5。

公式表达:模型的泛化误差(在新数据上的错误率)可以分解为:
泛化误差 = 偏差(Bias) + 方差(Variance) + 噪声(Noise) \text{泛化误差} = \text{偏差(Bias)} + \text{方差(Variance)} + \text{噪声(Noise)} 泛化误差=偏差(Bias+方差(Variance+噪声(Noise
数据量不足时,方差会增大(模型对训练数据的微小变化敏感),导致过拟合(泛化误差大)。


计算资源:为什么深层网络需要“烧钱”?

数学本质:神经网络的训练涉及大量矩阵运算(前向传播和反向传播)。假设一个网络有 ( L ) 层,每层有 ( N ) 个神经元,输入维度为 ( D ),则前向传播的计算量约为 ( O(L \cdot N \cdot D) )。对于深层网络(如ResNet有152层),计算量会指数级增长。

举例:训练一个参数规模为10亿的大语言模型(如GPT-2),需要计算约 ( 10^{12} ) 次浮点运算(FLOPs)。假设一块GPU每秒能计算 ( 10^{12} ) FLOPs,训练需要1天;如果参数规模增加到1000亿(如GPT-3),则需要1000天,必须用上万块GPU并行计算。


泛化能力:如何用数学衡量?

核心指标:测试集准确率(在未训练数据上的正确率)。
数学定义:假设训练集 ( S ) 来自分布 ( P(x,y) ),测试集 ( T ) 来自同一分布,泛化误差为:
ϵ gen = E ( x , y ) ∼ P [ 1 ( f ^ ( x ) ≠ y ) ] \epsilon_{\text{gen}} = \mathbb{E}_{(x,y) \sim P} [\mathbb{1}(\hat{f}(x) \neq y)] ϵgen=E(x,y)P[1(f^(x)=y)]
其中 ( \hat{f} ) 是训练好的模型。

提升方法:通过数据增强(如旋转、翻转图片)增加训练数据的多样性,让模型学习到“不变特征”(比如无论猫是正面还是侧面,都能识别)。


项目实战:用代码复现挑战与解决

开发环境搭建

  • 操作系统:Ubuntu 20.04
  • 工具:Python 3.8、PyTorch 1.9、CUDA 11.1(GPU加速)
  • 数据:MNIST手写数字数据集(6万训练图,1万测试图)

源代码详细实现和代码解读

我们将训练一个简单的神经网络,故意减少训练数据量(只用100张图),观察过拟合现象,然后用数据增强和Dropout层缓解过拟合。

步骤1:加载数据(故意减少数据量)
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, Subset

# 数据预处理(归一化)
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))  # MNIST的均值和标准差
])

# 加载完整训练集(6万张图),但只取前100张
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_subset = Subset(train_dataset, indices=range(100))  # 只取前100张

# 测试集(1万张图)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)

# 数据加载器
train_loader = DataLoader(train_subset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
步骤2:定义过拟合模型(无任何正则化)
class OverfitNet(nn.Module):
    def __init__(self):
        super(OverfitNet, self).__init__()
        self.fc1 = nn.Linear(28*28, 512)  # 大隐藏层(增加复杂度)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, 10)

    def forward(self, x):
        x = x.view(-1, 28*28)
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x
步骤3:训练并观察过拟合
model = OverfitNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

train_losses = []
test_losses = []

for epoch in range(50):  # 训练50轮(故意多训练,加剧过拟合)
    # 训练
    model.train()
    train_loss = 0
    for data, target in train_loader:
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        train_loss += loss.item()
    train_losses.append(train_loss / len(train_loader))

    # 测试
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            output = model(data)
            loss = criterion(output, target)
            test_loss += loss.item()
            pred = output.argmax(dim=1)
            correct += (pred == target).sum().item()
    test_losses.append(test_loss / len(test_loader))
    test_acc = correct / len(test_dataset)
    print(f'Epoch {epoch+1}: Train Loss={train_losses[-1]:.4f}, Test Acc={test_acc:.4f}')

输出结果(示例):

  • 训练10轮后,训练损失接近0(模型完全记住了100张训练图);
  • 测试准确率仅50%左右(模型无法泛化到新数据)。
步骤4:用数据增强和Dropout缓解过拟合
# 数据增强(旋转、平移、缩放)
transform_aug = transforms.Compose([
    transforms.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.8, 1.2)),  # 随机仿射变换
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])

# 重新加载训练集(使用增强后的数据)
train_dataset_aug = datasets.MNIST(root='./data', train=True, download=True, transform=transform_aug)
train_subset_aug = Subset(train_dataset_aug, indices=range(100))  # 仍用100张原图,但每次训练随机增强

# 定义带Dropout的模型
class RegularizedNet(nn.Module):
    def __init__(self):
        super(RegularizedNet, self).__init__()
        self.fc1 = nn.Linear(28*28, 512)
        self.dropout1 = nn.Dropout(0.5)  # 随机失活50%的神经元
        self.fc2 = nn.Linear(512, 256)
        self.dropout2 = nn.Dropout(0.5)
        self.fc3 = nn.Linear(256, 10)

    def forward(self, x):
        x = x.view(-1, 28*28)
        x = torch.relu(self.fc1(x))
        x = self.dropout1(x)  # Dropout层
        x = torch.relu(self.fc2(x))
        x = self.dropout2(x)
        x = self.fc3(x)
        return x

# 重新训练(其他代码同步骤3)
model = RegularizedNet()
optimizer = optim.Adam(model.parameters(), lr=0.001)

输出结果(示例):

  • 训练损失不再快速下降(模型无法“死记硬背”增强后的数据);
  • 测试准确率提升到80%以上(泛化能力增强)。

实际应用场景

医疗诊断:可解释性是“生命线”

AI用于癌症诊断时,医生需要知道:“AI为什么认为这是肿瘤?”如果模型说不清楚,医生不敢采信。例如,谷歌的乳腺癌检测AI曾因“无法解释关键特征”被部分医院拒绝使用。

自动驾驶:泛化能力决定“生死”

自动驾驶AI需要识别各种天气(暴雨、大雪)、路况(城市、乡村)、行人(穿裙子的老人、骑电动车的小孩)。如果模型泛化能力弱,可能在“没见过”的场景下失效(比如误将“穿反光背心的工人”识别为“路牌”)。

推荐系统:数据依赖导致“信息茧房”

推荐系统(如短视频、新闻)依赖用户行为数据训练,但如果数据只包含用户“已感兴趣”的内容,模型会过度推荐相似内容(过拟合),导致用户“看不到其他类型的信息”(泛化能力弱)。


工具和资源推荐

  • 过拟合缓解工具

    • PyTorch的nn.Dropoutnn.BatchNorm层;
    • 数据增强库Albumentations(图像)、nlpaug(文本)。
  • 可解释性工具

    • SHAP(计算特征重要性);
    • LIME(局部线性近似解释);
    • TensorBoard的“特征可视化”功能。
  • 计算资源优化工具

    • 模型压缩库TorchPrune(剪枝);
    • 量化工具TensorRT(将浮点数运算转为整数运算,减少计算量)。
  • 学习资源

    • 书籍《Deep Learning》(花书)第5章(过拟合与正则化);
    • 论文《Deep Learning for AI》(Yann LeCun等,综述神经网络挑战);
    • 课程《CS231n》(斯坦福大学,卷积神经网络实战)。

未来发展趋势与挑战

趋势1:神经架构搜索(NAS)——自动设计“抗过拟合”网络

传统神经网络的层数、神经元数量需要人工设计,耗时且容易过拟合。NAS可以自动搜索“既复杂又鲁棒”的网络结构,例如Google的EfficientNet通过NAS设计出了参数更少、泛化能力更强的模型。

趋势2:自监督学习——减少数据依赖

自监督学习让模型“无师自通”:通过“自己给自己出题”学习特征(比如遮住图片的一部分,让模型预测被遮住的内容)。例如,OpenAI的CLIP模型用4亿张“图片-文本”对训练,无需人工标注,大幅降低了数据依赖。

趋势3:边缘计算——降低计算资源需求

将神经网络部署到手机、摄像头等边缘设备(无需连接云端),需要模型“又小又强”。通过模型压缩(剪枝、量化)和轻量级架构设计(如MobileNet、EfficientNet-Lite),未来的AI可能像“智能芯片”一样嵌入各种设备。

趋势4:神经符号系统——提升可解释性

将神经网络的“感知能力”与符号逻辑的“推理能力”结合,例如用神经网络识别图像中的“猫”,再用逻辑规则推理“猫在沙发上→沙发是家具”。这种“神经+符号”的混合模型可能成为可解释AI的突破口。


总结:学到了什么?

核心概念回顾

  • 过拟合:模型“死记硬背”训练数据,无法应对新数据;
  • 可解释性差:模型像“黑箱”,说不清楚决策逻辑;
  • 数据依赖:需要海量数据才能“学会”,数据不足则学不会、学歪;
  • 计算资源需求高:训练深层网络需要大量GPU、电力;
  • 泛化能力弱:换个环境(新数据分布)就“不会了”。

概念关系回顾

五大挑战相互关联:数据不足→过拟合;资源不足→可解释性差;数据和资源都不足→泛化能力弱。解决这些挑战需要“组合拳”:用正则化缓解过拟合,用自监督学习减少数据依赖,用模型压缩降低资源需求,用神经符号系统提升可解释性。


思考题:动动小脑筋

  1. 假设你要训练一个识别“苹果”的AI,但只有100张苹果图片(其中90张是红苹果,10张是青苹果),你会如何避免过拟合?(提示:数据增强、正则化)

  2. 如果你是医生,需要用AI辅助诊断肺癌,你最关心AI的哪个挑战?为什么?(提示:可解释性、泛化能力)

  3. 现在有一个神经网络模型,训练时用的是“白天城市街景”图片,测试时用“夜晚乡村道路”图片,准确率很低。你认为可能是哪个挑战导致的?如何改进?(提示:泛化能力、数据多样性)


附录:常见问题与解答

Q:为什么神经网络比传统机器学习模型(如决策树)更易过拟合?
A:神经网络的“容量”(学习复杂模式的能力)更强,容易记住训练数据中的噪声;而决策树的复杂度受限于树的深度,过拟合风险较低(但可能欠拟合)。

Q:可解释性强的模型一定更好吗?
A:不一定。例如,线性回归模型可解释性强(系数直接表示特征重要性),但无法学习复杂模式;神经网络可解释性弱,但能解决更复杂的问题。实际应用中需要权衡“性能”和“可解释性”。

Q:小数据场景下,如何训练神经网络?
A:可以用迁移学习(复用预训练模型的特征)、小样本学习(Few-shot Learning)、数据增强(生成虚拟数据)等方法。例如,用ImageNet预训练的ResNet模型,微调少量目标数据即可识别新类别。


扩展阅读 & 参考资料

  • Goodfellow I, Bengio Y, Courville A. 《Deep Learning》(花书)第5章“训练误差和泛化误差”
  • Lipton Z C. 《The Mythos of Model Interpretability》(可解释性经典论文)
  • Brown T, et al. 《Language Models are Few-Shot Learners》(GPT-3论文,小样本学习)
  • TensorFlow官方文档:Overfitting and Underfitting
  • PyTorch官方教程:Data Augmentation
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值