1、 n8n与MCP概述
n8n是一个具有原生AI功能的工作流自动化平台,提供代码灵活性和无代码速度的结合。它支持400多种集成,采用公平代码许可。
MCP(Model Context Protocol)是一种标准化协议,旨在为AI应用提供与外部工具、数据源和服务的交互接口。其核心功能是帮助AI系统动态捕捉、结构化处理上下文信息,并高效传递至模型 。
两者的结合可以创建强大的本地化AI工作流,实现从设计到部署的全流程自动化。
2、 本地部署n8n
n8n支持多种本地部署方式,以下是三种主要方法:
2.1 使用Docker部署(推荐)
# 创建数据卷
docker volume create n8n_data
# 运行n8n容器
docker run -it --rm --name n8n -p 5678:5678 -v n8n_data:/home/node/.n8n docker.n8n.io/n8nio/n8n
n8n镜像拉取失败
如果出现n8n镜像下载不下来的问题,可以使用我提供的私有仓库的镜像
docker run -it --rm --name n8n -p 5678:5678 -v n8n_data:/home/node/.n8n registry.cn-hangzhou.aliyuncs.com/tulingfox/n8n
n8n安全Cookie配置问题
三种解决方案:
1)启用HTTPS/TLS(推荐方案)
这是最安全且推荐的解决方案,特别适合生产环境使用。(通常结合nginx实现,这里不做详细介绍)
2) 使用localhost访问(本地开发推荐)
如果您只是在本地开发测试,最简单的解决方案是:
- 确保通过
http://localhost:5678
访问 - 不要使用IP地址或域名访问
- 避免使用Safari浏览器(因其特殊的安全策略)
这种方法保持了安全设置不变,仅调整访问方式。
3)禁用安全Cookie(临时解决方案)
注意:这会降低安全性,仅建议在受控环境或临时测试时使用。
# 遇到安全cookie问题,可以添加环境变量禁用
docker run -it --rm --name n8n -p 5678:5678 -e N8N_SECURE_COOKIE=false -v n8n_data:/home/node/.n8n registry.cn-hangzhou.aliyuncs.com/tulingfox/n8n
浏览器访问http://ip:5678,首次访问进入注册页面
2.2 使用Docker Compose部署(适合生产环境)
创建docker-compose.yml
文件:
version: '3.8'
volumes:
db_storage:
n8n_storage:
services:
postgres:
image: postgres:16
restart: always
environment:
- POSTGRES_USER=root
- POSTGRES_PASSWORD=123456
- POSTGRES_DB=n8n
volumes:
- db_storage:/var/lib/postgresql/data
healthcheck:
test: ['CMD-SHELL', 'pg_isready -h localhost -U root -d n8n']
interval: 5s
timeout: 5s
retries: 10
n8n:
image: docker.n8n.io/n8nio/n8n
restart: always
environment:
- DB_TYPE=postgresdb
- DB_POSTGRESDB_HOST=postgres
- DB_POSTGRESDB_PORT=5432
- DB_POSTGRESDB_DATABASE=n8n
- DB_POSTGRESDB_USER=root
- DB_POSTGRESDB_PASSWORD=123456
ports:
- "5678:5678"
volumes:
- n8n_storage:/home/node/.n8n
depends_on:
postgres:
condition: service_healthy
然后运行
docker compose up -d
2.3 使用npm安装
npx n8n
或者从源码安装
git clone https://github.com/n8n-io/n8n.git
cd n8n
npm install
npm run build
npm run start
3、 安装MCP社区节点
n8n默认不包含MCP支持,需要手动安装社区节点:
- 登录n8n后进入个人账号设置页面
- 点击"社区节点"
- 选择"安装一个社区节点",输入
n8n-nodes-mcp
- 等待安装完成
4、 创建MCP AI工作流
安装MCP节点后,可以创建AI工作流:
1)创建On Chat Message触发器:作为工作流的起点
2)添加AI Agent节点:配置AI模型(如deepseek或本地部署的DeepSeek-R1-Distill-Qwen-1.5B )
3)添加MCP Tool节点:点击AI Agent下的Tool加号添加
- 这是n8n连接MCP服务的核心通道
- 配置MCP服务器地址和认证信息
接入百度地图
快速接入百度地图MCP Server
{
"mcpServers": {
"baidu-map": {
"command": "npx",
"args": [
"-y",
"@baidumap/mcp-server-baidu-map"
],
"env": {
"BAIDU_MAP_API_KEY": "{您的AK}"
}
}
}
}
完整的工作流
4)测试效果
提示词:请为我计划一次北京赏花一日游。尽量给出更舒适的出行安排,当然,也要注意天气状况。
5、 应用场景
结合n8n和MCP可以实现多种高级应用:
- Claude桌面应用集成:集成文件系统、搜索引擎和网页功能
- 智能代码生成:通过@codebase指令分析整个项目结构,解决跨文件逻辑联动问题
- 自动化测试与部署:生成单元测试脚本,结合SonarQube插件实现代码安全审计
- 多语言混合开发:在TypeScript与Go混合项目中解决类型兼容性问题
- 3D建模自动化:Blender + MCP打造极致3D建模场景
- 智能出行规划:Claude + 百度地图MCP
6. 总结
n8n与MCP的结合为本地化AI工作流提供了强大的解决方案。通过可视化界面和丰富的集成能力,用户可以构建从简单自动化到复杂AI代理的各种工作流。虽然配置过程有一定复杂度,但其灵活性、数据控制能力和成本效益使其成为企业和技术团队理想的自动化平台选择。
随着AI模型能力的提升(如Claude 3.7支持12万Token上下文窗口),MCP在复杂项目中的应用潜力将进一步释放 。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。