235. 二叉搜索树的最近公共祖先
关键点1:利用二叉搜索树的特性判断应往左还是往右递归,递归时注意接住返回值,并返回;
关键点2:
情况1:root.val > p.val,q.val,接着就往左递归;
情况2:root.val < p.val,q.val,接着就往右递归;
情况3:root.val 在 p.val,q.val之间,那么root就是最近公共祖先了,返回此时的root。
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root == null){
return null;
}
if(root.val > p.val && root.val > q.val){
TreeNode leftNode = lowestCommonAncestor(root.left,p,q);
if(leftNode != null){
return leftNode;
}
}
if(root.val < p.val && root.val < q.val){
TreeNode rightNode = lowestCommonAncestor(root.right,p,q);
if(rightNode != null){
return rightNode;
}
}
return root;
}
}
701.二叉搜索树中的插入操作
关键点1:利用二叉搜索树的特性判断应往左还是往右递归,递归时注意接住返回值,此时是按root.left和root.right整个部分来接的;
关键点2:终止条件,当root == null时,证明找到了要插入的位置,即在此处新建一个节点并返回
class Solution {
public TreeNode insertIntoBST(TreeNode root, int val) {
if(root == null){
return new TreeNode(val);
}
if(root.val > val){
root.left = insertIntoBST(root.left,val);
}else if(root.val < val){
root.right = insertIntoBST(root.right,val);
}
return root;
}
}
450.删除二叉搜索树中的节点
关键点1:利用二叉搜索树的特性判断应往左还是往右递归,递归时注意接住返回值,此时是按root.left和root.right整个部分来接的;
关键点2:当root.val == val时,证明此时的root为要删除的位置;
关键点3:删除的四种情况。
情况1:如果此时root为倒数第二层节点:root.right != null && root.left == null,则把root.right给root,以替换root的值;
情况2:如果此时root为倒数第二层节点:root.right == null && root.left != null,则把root.left给root,以替换root的值;
情况3:如果此时root为根节点:root.right == null && root.left == null,则把null给root,以替换root
情况4:如果此时root的左右子节点都不为空:root.right != null && root.left != null。
(1)通过新建一个节点cur,令它等于root.right;
(2)然后将cur一直往左遍历,使cur走到root.right树上最左边的那个节点;
(3)将root的左子树接到cur的左子树上,cur.left = root.left;
(4)删除此时的root,即令root = root.right。
class Solution {
public TreeNode deleteNode(TreeNode root, int key) {
if(root == null){
return root;
}
if(root.val > key){//往左遍历
root.left = deleteNode(root.left,key);
}else if(root.val < key){//往右遍历
root.right = deleteNode(root.right,key);
}else{//找到root为需要删除的节点
if(root.right != null && root.left == null){
return root.right;
}else if(root.right == null && root.left != null){
return root.left;
}else if(root.right == null && root.left == null){
return null;
}else{
TreeNode cur = root.right;
while(cur.left != null){
cur = cur.left;
}
cur.left = root.left;
root = root.right;
return root;
}
}
return root;
}
}