123.买卖股票的最佳时机III
关键点1:dp数组的含义
1-1:dp[i][0] 第i天不持有股票的最大金钱
1-2:dp[i][1] 第i天第一次持有股票的最大金钱
1-3:dp[i][2] 第i天第一次不持有股票的最大金钱
1-4:dp[i][3] 第i天第二次持有股票的最大金钱
1-5:dp[i][4] 第i天第二次不持有股票的最大金钱
关键点2:递归公式的推导
2-1:dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0]-prices[i]); 第i天第一次持有股票的最大金钱 = max(第i-1天持有股票的最大金钱,第i-1天不持有股票的最大金钱 - 第i天买入股票的最大金钱)
2-2:dp[i][2] = Math.max(dp[i-1][2],dp[i-1][1]+prices[i]); 第i天第一次不持有股票的最大金钱 = max(第i-1天不持有股票的最大金钱,第i-1天第一次持有股票的最大金钱 + 第i天卖出股票的最大金钱)
2-3:dp[i][3] = Math.max(dp[i-1][3],dp[i-1][2]-prices[i]); 第i天第二次持有股票的最大金钱 = max(第i-1天不持有股票的最大金钱,第i-1天第一次不持有股票的最大金钱 - 第i天买入股票的最大金钱)
2-4:dp[i][4] = Math.max(dp[i-1][4],dp[i-1][3]+prices[i]); 第i天第二次不持有股票的最大金钱 = max(第i-1天不持有股票的最大金钱,第i-1天第二次持有股票的最大金钱 + 第i天卖出股票的最大金钱)
关键点3:dp数组初始化
dp[0][0] = 0,dp[0][1] = - prices[0], dp[0][2] = 0, dp[0][3] = -prices[0];,dp[0][4] = 0;
关键点4:遍历顺序
由于下一个dp值与上一个dp值有关,因此for循环从前往后遍历(0已经初始化了,从1开始遍历)
class Solution {
public int maxProfit(int[] prices) {
// dp[i][0] 第i天不持有股票的最大金钱
// dp[i][1] 第i天第一次持有股票的最大金钱
// dp[i][2] 第i天第一次不持有股票的最大金钱
// dp[i][3] 第i天第二次持有股票的最大金钱
// dp[i][4] 第i天第二次不持有股票的最大金钱
int[][] dp = new int[prices.length][5];
dp[0][0] = 0;
dp[0][1] = -prices[0];
dp[0][2] = 0;
dp[0][3] = -prices[0];
dp[0][4] = 0;
for(int i = 1;i < prices.length;i++){
dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0]-prices[i]);
dp[i][2] = Math.max(dp[i-1][2],dp[i-1][1]+prices[i]);
dp[i][3] = Math.max(dp[i-1][3],dp[i-1][2]-prices[i]);
dp[i][4] = Math.max(dp[i-1][4],dp[i-1][3]+prices[i]);
}
return dp[prices.length-1][4];
}
}
188.买卖股票的最佳时机IV
关键点1:dp数组的含义
1-1:dp[i][0] 第i天不持有股票的最大金钱
1-2:dp[i][1] 第i天第一次持有股票的最大金钱
1-3:dp[i][2] 第i天第一次不持有股票的最大金钱
1-4:dp[i][3] 第i天第二次持有股票的最大金钱
1-5:dp[i][4] 第i天第二次不持有股票的最大金钱
关键点2:递归公式的推导
由上一题的这个可知:1,2,3,4用j代替,再写一层内循环
j为奇数时,dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-1]-prices[i]);
j为偶数时,dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-1]+prices[i]);
2-1:dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0]-prices[i]); 第i天第一次持有股票的最大金钱 = max(第i-1天持有股票的最大金钱,第i-1天不持有股票的最大金钱 - 第i天买入股票的最大金钱)
2-2:dp[i][2] = Math.max(dp[i-1][2],dp[i-1][1]+prices[i]); 第i天第一次不持有股票的最大金钱 = max(第i-1天不持有股票的最大金钱,第i-1天第一次持有股票的最大金钱 + 第i天卖出股票的最大金钱)
2-3:dp[i][3] = Math.max(dp[i-1][3],dp[i-1][2]-prices[i]); 第i天第二次持有股票的最大金钱 = max(第i-1天不持有股票的最大金钱,第i-1天第一次不持有股票的最大金钱 - 第i天买入股票的最大金钱)
2-4:dp[i][4] = Math.max(dp[i-1][4],dp[i-1][3]+prices[i]); 第i天第二次不持有股票的最大金钱 = max(第i-1天不持有股票的最大金钱,第i-1天第二次持有股票的最大金钱 + 第i天卖出股票的最大金钱)
关键点3:dp数组初始化
dp[0][0] = 0,dp[0][1] = - prices[0], dp[0][2] = 0, dp[0][3] = -prices[0];,dp[0][4] = 0;
依据上一题可知道,dp[0][i],i是偶数的话 -> dp[0][i] = 0;i是奇数的话 -> dp[0][i] = -prices[0];
关键点4:遍历顺序
由于下一个dp值与上一个dp值有关,因此for循环从前往后遍历(0已经初始化了,从1开始遍历)
class Solution {
public int maxProfit(int k, int[] prices) {
int[][] dp = new int[prices.length][2*k+1];
for(int i = 0;i <= 2*k;i++ ){
if(i%2 ==0){
dp[0][i] = 0;
}else{
dp[0][i] = -prices[0];
}
}
for(int i = 1;i < prices.length;i++){
for(int j = 1;j <= 2*k;j++) {
if(j%2 == 1){
dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-1]-prices[i]);
}else{
dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-1]+prices[i]);
}
}
}
return dp[prices.length-1][2*k];
}
}