854. Floyd求最短路
给定一个 nn 个点 mm 条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定 kk 个询问,每个询问包含两个整数 xx 和 yy,表示查询从点 xx 到点 yy 的最短距离,如果路径不存在,则输出 impossible
。
数据保证图中不存在负权回路。
输入格式
第一行包含三个整数 n,m,kn,m,k。
接下来 mm 行,每行包含三个整数 x,y,zx,y,z,表示存在一条从点 xx 到点 yy 的有向边,边长为 zz。
接下来 kk 行,每行包含两个整数 x,yx,y,表示询问点 xx 到点 yy 的最短距离。
输出格式
共 kk 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible
。
数据范围
1≤n≤2001≤n≤200,
1≤k≤n21≤k≤n2
1≤m≤200001≤m≤20000,
图中涉及边长绝对值均不超过 1000010000。
输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1
代码:
#include<stdio.h>
#include<string.h>
#define N 210
#define null 0x3f3f3f3f
int n, m;
int g[N][N]; //g[i][j]表示i->j的路的长度
int min(int k,int g)
{
return k<g? k:g;
}
void floyd()
{
for(int k = 1; k <= n; k ++)
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= n; j ++)
{
int t = g[i][k] + g[k][j];
g[i][j]=min(g[i][j],t);
//if(t < g[i][j]) g[i][j] = t;
}
}
int main()
{
memset(g, null, sizeof g);
int q;
scanf("%d%d%d", &n, &m, &q);
for(int i = 1; i <= n; i ++) g[i][i] = 0;
while(m --)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
g[a][b]=min(g[a][b],c);
//if(c < g[a][b]) g[a][b] = c;
}
floyd();
while(q --)
{
int a, b;
scanf("%d%d", &a, &b);
if(g[a][b] > null / 2) puts("impossible");
else printf("%d\n", g[a][b]);
}
return 0;
}