Floyd求最短路

854. Floyd求最短路

给定一个 nn 个点 mm 条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定 kk 个询问,每个询问包含两个整数 xx 和 yy,表示查询从点 xx 到点 yy 的最短距离,如果路径不存在,则输出 impossible

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数 n,m,kn,m,k。

接下来 mm 行,每行包含三个整数 x,y,zx,y,z,表示存在一条从点 xx 到点 yy 的有向边,边长为 zz。

接下来 kk 行,每行包含两个整数 x,yx,y,表示询问点 xx 到点 yy 的最短距离。

输出格式

共 kk 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible

数据范围

1≤n≤2001≤n≤200,
1≤k≤n21≤k≤n2
1≤m≤200001≤m≤20000,
图中涉及边长绝对值均不超过 1000010000。

输入样例:

3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3

输出样例:

impossible
1

代码:

#include<stdio.h>
#include<string.h>
#define N 210
#define null 0x3f3f3f3f
int n, m;
int g[N][N];        //g[i][j]表示i->j的路的长度
int min(int k,int g)
{
    return k<g? k:g;
}
void floyd()
{
    for(int k = 1; k <= n; k ++)
        for(int i = 1; i <= n; i ++)
            for(int j = 1; j <= n; j ++)
            {
                int t = g[i][k] + g[k][j];
                g[i][j]=min(g[i][j],t);
                //if(t < g[i][j])  g[i][j] = t;
            }
}
int main()
{
    memset(g, null, sizeof g);

    int q;
    scanf("%d%d%d", &n, &m, &q);
    for(int i = 1; i <= n; i ++)  g[i][i] = 0;

    while(m --)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        g[a][b]=min(g[a][b],c);
        //if(c < g[a][b])  g[a][b] = c;
    }


    floyd();
    while(q --)
    {
        int a, b;
        scanf("%d%d", &a, &b);
        if(g[a][b] > null / 2)  puts("impossible");
        else  printf("%d\n", g[a][b]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值