282. 石子合并

设有 NN 堆石子排成一排,其编号为 1,2,3,…,N1,2,3,…,N。

每堆石子有一定的质量,可以用一个整数来描述,现在要将这 NN 堆石子合并成为一堆。

每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。

例如有 44 堆石子分别为 1 3 5 2, 我们可以先合并 1、21、2 堆,代价为 44,得到 4 5 2, 又合并 1,21,2 堆,代价为 99,得到 9 2 ,再合并得到 1111,总代价为 4+9+11=244+9+11=24;

如果第二步是先合并 2,32,3 堆,则代价为 77,得到 4 7,最后一次合并代价为 1111,总代价为 4+7+11=224+7+11=22。

问题是:找出一种合理的方法,使总的代价最小,输出最小代价。

输入格式

第一行一个数 NN 表示石子的堆数 NN。

第二行 NN 个数,表示每堆石子的质量(均不超过 10001000)。

输出格式

输出一个整数,表示最小代价。

数据范围

1≤N≤3001≤N≤300

输入样例:

4
1 3 5 2

输出样例:

22

代码:

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
#define int long long
const int N = 351;
int a[N],b[N],f[N][N];

signed main()
{
    int n;
    cin>>n;
    for (int i = 1; i <= n; i ++ )
    cin>>a[i];
    for (int i = 1; i <= n; i ++ )
    b[i]=b[i-1]+a[i];
    for (int i = 1; i <= n; i ++ )
    for (int j = 1; j <= n; j ++ )
    {
        f[i][j]=1e7;
        if(i==j)
        f[i][j]=0;
    }
    for (int len = 1; len <= n; len ++) 
    { 
        // len表示i和j堆下标的差值
        for (int i = 1; i <= n-len; i ++) 
        {
            int j = i + len;
            // 自动得到右端点
            for (int k = i; k < j; k ++) 
            // 必须满足k + 1 <= j
                f[i][j] = min(f[i][j],f[i][k] + f[k + 1][j] +b[j] - b[i - 1]);
            //合并两堆石头的最小代价(加上这两堆石头合成需要的代价)
        }
    }
    cout<<f[1][n];
}
/*
第一次每两个合并
第二次每3个合并
第n-1次求的f[1][n]!!!
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值