设有 NN 堆石子排成一排,其编号为 1,2,3,…,N1,2,3,…,N。
每堆石子有一定的质量,可以用一个整数来描述,现在要将这 NN 堆石子合并成为一堆。
每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。
例如有 44 堆石子分别为 1 3 5 2
, 我们可以先合并 1、21、2 堆,代价为 44,得到 4 5 2
, 又合并 1,21,2 堆,代价为 99,得到 9 2
,再合并得到 1111,总代价为 4+9+11=244+9+11=24;
如果第二步是先合并 2,32,3 堆,则代价为 77,得到 4 7
,最后一次合并代价为 1111,总代价为 4+7+11=224+7+11=22。
问题是:找出一种合理的方法,使总的代价最小,输出最小代价。
输入格式
第一行一个数 NN 表示石子的堆数 NN。
第二行 NN 个数,表示每堆石子的质量(均不超过 10001000)。
输出格式
输出一个整数,表示最小代价。
数据范围
1≤N≤3001≤N≤300
输入样例:
4
1 3 5 2
输出样例:
22
代码:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
#define int long long
const int N = 351;
int a[N],b[N],f[N][N];
signed main()
{
int n;
cin>>n;
for (int i = 1; i <= n; i ++ )
cin>>a[i];
for (int i = 1; i <= n; i ++ )
b[i]=b[i-1]+a[i];
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
{
f[i][j]=1e7;
if(i==j)
f[i][j]=0;
}
for (int len = 1; len <= n; len ++)
{
// len表示i和j堆下标的差值
for (int i = 1; i <= n-len; i ++)
{
int j = i + len;
// 自动得到右端点
for (int k = i; k < j; k ++)
// 必须满足k + 1 <= j
f[i][j] = min(f[i][j],f[i][k] + f[k + 1][j] +b[j] - b[i - 1]);
//合并两堆石头的最小代价(加上这两堆石头合成需要的代价)
}
}
cout<<f[1][n];
}
/*
第一次每两个合并
第二次每3个合并
第n-1次求的f[1][n]!!!
*/