1049. 最后一块石头的重量 II
题目链接:1049. 最后一块石头的重量 II
文档讲解:代码随想录/最后一块石头的重量 II
视频讲解:视频讲解-最后一块石头的重量 II
状态:已完成(1遍)
解题过程
这几天属实是有点分身乏术了,先直接看题解AC了,二刷的时候再来补上自己的思路和尝试吧。
看完代码随想录之后的想法
用动态规划五部曲:
- 确定dp数组以及下标的含义:dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j];
- 确定递推公式:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
-
代码初始化如下:因为重量都不会是负数,所以dp[j]都初始化为0就可以了,这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);中dp[j]才不会初始值所覆盖;
- 确定遍历顺序:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历;
- 举例推导dp数组:
讲解代码如下:
/**
* @param {number[]} stones
* @return {number}
*/
var lastStoneWeightII = function (stones) {
let sum = stones.reduce((s, n) => s + n);
let dpLen = Math.floor(sum / 2);
let dp = new Array(dpLen + 1).fill(0);
for (let i = 0; i < stones.length; ++i) {
for (let j = dpLen; j >= stones[i]; --j) {
dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
return sum - dp[dpLen] - dp[dpLen];
};
494. 目标和
题目链接:494. 目标和
文档讲解:代码随想录/目标和
视频讲解:视频讲解-目标和
状态:已完成(1遍)
解题过程
看完代码随想录之后的想法
用动态规划五部曲:
- 确定dp数组以及下标的含义:填满j(包括j)这么大容积的包,有dp[j]种方法;
- 确定递推公式:
dp[j] += dp[j - nums[i]]
-
代码初始化如下:
从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。
这里有录友可能认为从dp数组定义来说 dp[0] 应该是0,也有录友认为dp[0]应该是1。
其实不要硬去解释它的含义,咱就把 dp[0]的情况带入本题看看应该等于多少。
如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法。
所以本题我们应该初始化 dp[0] 为 1。
可能有同学想了,那 如果是 数组[0,0,0,0,0] target = 0 呢。
其实 此时最终的dp[0] = 32,也就是这五个零 子集的所有组合情况,但此dp[0]非彼dp[0],dp[0]能算出32,其基础是因为dp[0] = 1 累加起来的。
dp[j]其他下标对应的数值也应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来。
- 确定遍历顺序:
nums放在外循环,target在内循环,且内循环倒序
- 举例推导dp数组
讲解代码如下:
const findTargetSumWays = (nums, target) => {
const sum = nums.reduce((a, b) => a+b);
if(Math.abs(target) > sum) {
return 0;
}
if((target + sum) % 2) {
return 0;
}
const halfSum = (target + sum) / 2;
let dp = new Array(halfSum+1).fill(0);
dp[0] = 1;
for(let i = 0; i < nums.length; i++) {
for(let j = halfSum; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[halfSum];
};
474.一和零
题目链接:474.一和零
文档讲解:代码随想录/一和零
视频讲解:视频讲解-一和零
状态:已完成(1遍)
解题过程
看完代码随想录之后的想法
用动态规划五部曲:
- 确定dp数组以及下标的含义:最多有i个0和j个1的strs的最大子集的大小为dp[i][j];
- 确定递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
- dp数组如何初始化:
01背包的dp数组初始化为0就可以。
因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖;
- 确定遍历顺序:外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历;
- 举例推导dp数组:
按照这个递推公式我们来推导一下,dp数组应该是如下的数列: 10 15 30 。
讲解代码如下:
const findMaxForm = (strs, m, n) => {
const dp = Array.from(Array(m+1), () => Array(n+1).fill(0));
let numOfZeros, numOfOnes;
for(let str of strs) {
numOfZeros = 0;
numOfOnes = 0;
for(let c of str) {
if (c === '0') {
numOfZeros++;
} else {
numOfOnes++;
}
}
for(let i = m; i >= numOfZeros; i--) {
for(let j = n; j >= numOfOnes; j--) {
dp[i][j] = Math.max(dp[i][j], dp[i - numOfZeros][j - numOfOnes] + 1);
}
}
}
return dp[m][n];
};