完全背包
题目链接:完全背包
文档讲解:代码随想录/完全背包
视频讲解:视频讲解-完全背包
状态:已完成(1遍)
解题过程
这几天属实是有点分身乏术了,先直接看题解AC了,二刷的时候再来补上自己的思路和尝试吧。
看完代码随想录之后的想法
讲解代码如下:
// 先遍历物品,再遍历背包容量
function test_completePack1() {
let weight = [1, 3, 5]
let value = [15, 20, 30]
let bagWeight = 4
let dp = new Array(bagWeight + 1).fill(0)
for(let i = 0; i <= weight.length; i++) {
for(let j = weight[i]; j <= bagWeight; j++) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i])
}
}
console.log(dp)
}
// 先遍历背包容量,再遍历物品
function test_completePack2() {
let weight = [1, 3, 5]
let value = [15, 20, 30]
let bagWeight = 4
let dp = new Array(bagWeight + 1).fill(0)
for(let j = 0; j <= bagWeight; j++) {
for(let i = 0; i < weight.length; i++) {
if (j >= weight[i]) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i])
}
}
}
console.log(2, dp);
}
518. 零钱兑换 II
题目链接:518. 零钱兑换 II
文档讲解:代码随想录/零钱兑换 II
视频讲解:视频讲解-零钱兑换 II
状态:已完成(1遍)
解题过程
看完代码随想录之后的想法
用动态规划五部曲:
- 确定dp数组以及下标的含义:凑成总金额j的货币组合数为dp[j];
- 确定递推公式:dp[j] += dp[j - coins[i]];
-
代码初始化如下:
首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。
那么 dp[0] = 1 有没有含义,其实既可以说 凑成总金额0的货币组合数为1,也可以说 凑成总金额0的货币组合数为0,好像都没有毛病。
但题目描述中,也没明确说 amount = 0 的情况,结果应该是多少。
这里我认为题目描述还是要说明一下,因为后台测试数据是默认,amount = 0 的情况,组合数为1的。
下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]
dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。
- 确定遍历顺序:
因为纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!
而本题要求凑成总和的组合数,元素之间明确要求没有顺序。
所以纯完全背包是能凑成总和就行,不用管怎么凑的。
本题是求凑出来的方案个数,且每个方案个数是为组合数。
那么本题,两个for循环的先后顺序可就有说法了。
我们先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。
代码如下:
for (int i = 0; i < coins.size(); i++) { // 遍历物品 for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量 dp[j] += dp[j - coins[i]]; } }
假设:coins[0] = 1,coins[1] = 5。
那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。
所以这种遍历顺序中dp[j]里计算的是组合数!
如果把两个for交换顺序,代码如下:
for (int j = 0; j <= amount; j++) { // 遍历背包容量 for (int i = 0; i < coins.size(); i++) { // 遍历物品 if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]]; } }
背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。
此时dp[j]里算出来的就是排列数!
讲解代码如下:
const change = (amount, coins) => {
let dp = Array(amount + 1).fill(0);
dp[0] = 1;
for(let i =0; i < coins.length; i++) {
for(let j = coins[i]; j <= amount; j++) {
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
377. 组合总和 Ⅳ
题目链接:377. 组合总和 Ⅳ
文档讲解:代码随想录/组合总和 Ⅳ
视频讲解:视频讲解-组合总和 Ⅳ
状态:已完成(1遍)
解题过程
看完代码随想录之后的想法
用动态规划五部曲:
- 确定dp数组以及下标的含义:凑成目标正整数为i的排列个数为dp[i];
- 确定递推公式:dp[i] += dp[i - nums[j]];
- dp数组如何初始化:
因为递推公式dp[i] += dp[i - nums[j]]的缘故,dp[0]要初始化为1,这样递归其他dp[i]的时候才会有数值基础。
至于dp[0] = 1 有没有意义呢?
其实没有意义,所以我也不去强行解释它的意义了,因为题目中也说了:给定目标值是正整数! 所以dp[0] = 1是没有意义的,仅仅是为了推导递推公式。
至于非0下标的dp[i]应该初始为多少呢?
初始化为0,这样才不会影响dp[i]累加所有的dp[i - nums[j]]。
- 确定遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历;
- 举例推导dp数组:
按照这个递推公式我们来推导一下,dp数组应该是如下的数列: 10 15 30 。
讲解代码如下:
const combinationSum4 = (nums, target) => {
let dp = Array(target + 1).fill(0);
dp[0] = 1;
for(let i = 0; i <= target; i++) {
for(let j = 0; j < nums.length; j++) {
if (i >= nums[j]) {
dp[i] += dp[i - nums[j]];
}
}
}
return dp[target];
};