问题
求斐波那契数列的第n项。(迭代实现)
提示:以下是本篇文章正文内容,下面案例可供参考
一、什么是斐波那契数列?
斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:
F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N * )
(有些书上斐波那契数列首元素是1,我们这里主要介绍首元素是0的情况,方法都是一样的)
二、解题思路
n>=2时,每个元素等于前两个元素的和,我们以一个简单数组举例
数列:0 1 1 2 3 4,我们用Ai(i=1,2,3…6)分别表示0,1,1,2,3,4
现问题是:求斐波那契数列的第i项,我们假设i=5
A5=A4+A3=(A3+A2)+(A2+A1)=[(A2+A1)+A2]+(A2+A1)
也就说,对于一个数Ai,我们可以把它分成Ai=Ai-1+Ai-2
然后,Ai-1=Ai-2+Ai-3,Ai-2=Ai-3+Ai-4
…
以此类推,分到A1,A2这种不能再分的结束
三、实战代码
public static int fibNaQie(int n) {
if(n==1)
{
return 0;
}
else if(n==2)
{
return 1;
}
else
{
return fibNaQie(n-1)+fibNaQie(n-2);
}
}
public static void main(String[] args) {
System.out.println(fibNaQie(1));
System.out.println(fibNaQie(2));
System.out.println(fibNaQie(3));
System.out.println(fibNaQie(4));
System.out.println(fibNaQie(5));
}
运行结果:
后记
斐波那契数列主要是运用到递归这个知识点,整体思路并不难懂,相信耐心学习的小伙伴一定学有收获,最后预祝读者生活愉快