【17年扬大真题】分别设计有序表的这把查找(用递归实现)、有序表的折半查找(用非递归实现)的算法。待查找的元素的关键字为整数,用户可由键盘输入表中元素和待查找的元素,要求输入的数据以“0”为结束标志。

【17年扬大真题】分别设计有序表的这把查找(用递归实现)、有序表的折半查找(用非递归实现)的算法。待查找的元素的关键字为整数,用户可由键盘输入表中元素和待查找的元素,要求输入的数据以“0”为结束标志。

//折半查找(递归版)——升序
int Binary_Search2(int arr[], int left, int right,int x) {
	int mid = (left + right) / 2;
	if (arr[mid] == x) {//递归退出条件
		return mid;
	}
	if (arr[mid] > x) {
		//去左半找
		return Binary_Search2(arr, left, mid - 1, x);
	}
	if (arr[mid] < x) {
		//去右半找
		return Binary_Search2(arr, mid + 1, right, x);
	}
}


int main() {
	int arr[20];
	int n = 0;
	printf("请升序输入表中元素个数:");
	scanf("%d", &n);

	printf("\n");
	printf("请输入要表中元素,以0为结束标志:");
	int i = 0;
	int j = 0;
	while (i<n+1) {//输入n个数组元素,再加1个0
		int tmp=scanf("%d", &j);
		if (tmp == 0) {
			break;
		}
		arr[i] = j;
		i++;
	}

	printf("请输入要查找的元素,将返回给你所需元素的下标:");
	int x = 0;
	scanf("%d", &x);
	int index=Binary_Search2(arr, 0,n-1, x);
	printf("所查找元素下标为%d", index);
	return 0;
}

在这里插入图片描述

//折半查找(非递归版)
int Binary_Search1(int arr[],int length,int x) {
	int left = 0;
	int right = length - 1;
	int mid = 0;
	while (left <= right) {
		mid = (left + right) / 2;
		if (arr[mid] == x) {
			return mid;
		}
		if (arr[mid] > x) {
			right = mid - 1;
		}
		if (arr[mid] < x) {
			left = mid + 1;
		}
	}
	printf("查找失败,请检查是否输入有误!");
	return -1;
}



int main() {
	int arr[20];
	int n = 0;
	printf("请升序输入表中元素个数:");
	scanf("%d", &n);

	printf("\n");
	printf("请输入要表中元素,以0为结束标志:");
	int i = 0;
	int j = 0;
	while (i<n+1) {//输入n个数组元素,再加1个0
		int tmp=scanf("%d", &j);
		if (tmp == 0) {
			break;
		}
		arr[i] = j;
		i++;
	}

	printf("请输入要查找的元素,将返回给你所需元素的下标:");
	int x = 0;
	scanf("%d", &x);
	int index=Binary_Search1(arr, n, x);
	printf("所查找元素下标为%d", index);
	return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

劲夫学编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值