数学建模(1)

搜索技巧:

1.加上引号再搜索

2.标题限定,在查询的时候在前面加上intitle

3.搜索文档:查询词后空格再输入filetype:文件格式(doc/pdf/xls)

4.去掉不想要的 查询词后加空格加减号和关键字

查文献

知网查询:

先看硕博士论文,快速理解。优先“被引”比较多的。

高级检索

其他查文献的方法:谷歌文献,open access library

查数据

首先是查文献有没有相关已经整理好的数据。然后是去国家统计局。

其他:awesome-public-datasets

数据预处理

缺失值:

缺的比较多的时候,可以选择删除这项数据。

简单的处理:均值、众数插补。这里分为定量数据和定性数据,定量数据就是一些数值,可以用均值来补。定性数据,就用出现次数最多的来补。适用于对于个体精度不高的数据。

对于个体精度要求较高的数据。我们可以采用牛顿插值法。牛顿插值法:根据固定的公式,构造近似的函数,补上缺失值,普适性强。缺点是:边缘处不稳定。不适合对导数有要求的题目。

样条插值法:用分段光滑的曲线去插值,光滑意味着曲线不仅连续,还要有连续的曲率。

异常值:

如何找到异常值:

        正态分布

箱型图

找到异常值之后,当作缺失值处理就好。

建模全过程:

可以通过查找文献来得到适合的模型

一篇完整的数模论文:摘要(最重要),问题重述,模型假设。符号说明,模型建立与求解,模型的优缺点与改进方法,参考文献和附录。

摘要:要使读者清楚,论文研究的问题、用了什么方法、求得了什么结果,以及每一部分的大致步骤。

问题重述:注意不要复制粘贴,避免查重

模型的假设和符号说明:有好的,合理的假设。使我们事半功倍。定义的重要符号,列一个表格说明即可。

模型的建立:一组公式,和对公式对每一个变量的解释。先查阅资料,有一个大概的,简单的模型,然后根据我们的要求,约束来修改这个简单的模型,使它符合我们的要求。

模型的求解:我们要把自己的编程思路写出来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值