HBU-NNDL 作业10:第六章课后题(LSTM | GRU)

目录

习题6-3 当使用公式(6.50)作为循环神经网络得状态更新公式时,分析其可能存在梯度爆炸的原因并给出解决办法.

习题6-4 推导LSTM网络中参数的梯度,并分析其避免梯度消失的效果

习题6-5 推导GRU网络中参数的梯度,并分析其避免梯度消失的效果

附加题 6-1P 什么时候应该用GRU? 什么时候用LSTM? 

心得体会


 

习题6-3 当使用公式(6.50)作为循环神经网络得状态更新公式时,分析其可能存在梯度爆炸的原因并给出解决办法.

原因

公式:h_t=h_{t-1}+g(x_t,h_{t-1};\theta ),此时可能存在||diag(f'(z_t))U^\top||> 1,则在计算梯度时有:

z_k=Uh_{k-1}+Wx_k+bg(\cdot)在第k时刻的输入,则在\delta_{t,k}=\frac{\partial L_t}{\partial z_k}时,有:

\delta _{t,k}=diag(f'(z_k))U^T \delta_{t,k+1}=\delta_{t,t}\prod_{i=k}^{t}diag(f'(z_k))U^T

因此:t-k\rightarrow +\infty时,\delta_{t,k}\rightarrow +\infty,故梯度此刻可能爆炸了。

解决方法

  1. 使用基于门控的循环神经网络;
  2. 使用更小的U和f(⋅)缓解,尽量让||diag(f'(z_t))U^\top||\approx 1

习题6-4 推导LSTM网络中参数的梯度,并分析其避免梯度消失的效果

第t时刻的输入向量:x_t

权重参数:W_i,W_c,W_f,W_o,U_i,U_c,U_f,U_o

偏置:b_i,b_c,b_f,b_o

\sigma:sigmoid函数

V:\frac{\partial o_t}{\partial h_t}

前向传播

 反向传播

隐藏状态h_tc_t​的梯度为:\delta h_t=\frac{\partial L}{\partial h_t}\delta c_t =\frac{\partial L}{\partial c_t}

损失函数:L(t)=l(t)+L(t+1) = l(t)+\sum\limits^{\tau-t}_{i=t+1}l(i)

最后时刻\tau时:

\delta h_\tau=(\frac{\partial o_\tau}{\partial h_\tau})^\top\frac{\partial L_\tau}{\partial o_\tau}=V^\top(\hat{y_t}-y_t)

\delta c_\tau = (\frac{\partial h_\tau}{\partial c_\tau})^\top\frac{\partial L(\tau)}{\partial h_\tau}=o_\tau \odot (1-tanh^2(c_\tau))\odot\delta h_\tau

从第t+1时刻反向传播到第t时刻:

\delta h_t = \frac{\partial L}{\partial h_t}=\frac{\partial l(t)}{\partial h_t}+(\frac{\partial h_{t+1}}{\partial h_t})^\top\frac{\partial L(t+1)}{\partial h_{t+1}}=V^\top(\hat{y_t}-y_t)+(\frac{\partial h_{t+1}}{h_t})^\top \delta h_{t+1}

又有:\triangle c_t = o_{t+1}\odot [1-tanh^2(c_{t+1})]

\frac{\partial h_{t+1}}{\partial h_t}=diag[o_{t+1}\odot (1-o_{t+1})\odot tanh(c_{t+1})]W_o+diag[\triangle c\odot f_{t+1}\odot (1-f_{t+1})\odot c_t]W_f +diag\{\triangle c\odot i_{t+1}\odot[1-(c_{t+1})^2]\}W_c+diag[\triangle c\odot c_{t+1}\odot i_{t+1}\odot (1-i_{t+1})]W_i

\delta c_t = (\frac{\partial c_{t+1}}{\partial c_t})^\top\frac{\partial L}{\partial c_{t+1}}+(\frac{\partial h_t}{\partial c_t})^\top\frac{\partial L}{\partial h_t}=(\frac{\partial c_{t+1}}{\partial c_t})^\top\delta c_{t+1}+\delta h_t \odot o_t \odot (1-tanh^2(c_t))

因此有:\delta c_t=\delta c_{t+1}\odot f_{t+1}+\delta h_t\odot o_t \odot (1-tanh^2(c_t))

于是:\frac{\partial L}{\partial W_f}=\sum\limits ^\tau_{t=1}[\delta c_t \odot c_{t-1}\odot f_t \odot (1-f_t)]h_{t-1}^\top

LSTM遗忘门值可以选择在[0,1]之间,让LSTM来改善梯度消失的情况。也可以选择接近1,让遗忘门饱和,此时远距离信息梯度不消失。也可以选择接近0,此时模型是故意阻断梯度流,遗忘之前信息。

参考:LSTM如何来避免梯度弥散和梯度爆炸? - 知乎

习题6-5 推导GRU网络中参数的梯度,并分析其避免梯度消失的效果

GRU将三门变两门:更新门z_t,重置门r_t,单元状态c与输出o合并为一个状态h

前向传播 

反向传播

参考:人人都能看懂的LSTM介绍及反向传播算法推导(非常详细) - 知乎

 t时刻其它节点的梯度:

 对参数的梯度:

GRU它引⼊了重置⻔(reset gate)和更新⻔(update gate) 的概念,从而修改了循环神经⽹络中隐藏状态的计算⽅式。

附加题 6-1P 什么时候应该用GRU? 什么时候用LSTM? 

LSTM与GRU二者结构十分相似,不同在于:

新的记忆都是根据之前状态及输入进行计算,但是GRU中有一个重置门控制之前状态的进入量,而在LSTM里没有类似门;
产生新的状态方式不同,LSTM有两个不同的门,分别是遗忘门(forget gate)和输入门(input gate),而GRU只有一种更新门(update gate);
LSTM对新产生的状态可以通过输出门(output gate)进行调节,而GRU对输出无任何调节。

GRU的优点是这是个更加简单的模型,所以更容易创建一个更大的网络,而且它只有两个门,在计算性上也运行得更快,然后它可以扩大模型的规模。

LSTM更加强大和灵活,因为它有三个门而不是两个。
 

心得体会

        因为自己的数学功底比较差,这次作业的推导感觉很迷茫很吃力,同时也借鉴了很多其他人的文章,再结合上次BPTT的作业才勉强完成了这次的作业。但是期末考试在下学期,还有很长时间去复习,不必感到着急。

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SVM算法通过将数据映射到高维空间,将数据分为两个类别。SVM算法的目标是找到一个超平面,可以将数据分为两个类别。SMO算法是一种优化算法,用于求解SVM的二次规划问。下面介绍如何使用SMO算法编写SVM对CIFAR-10数据进行分类。 首先,我们需要加载CIFAR-10数据集。CIFAR-10数据集包含10个类别的60000个32x32彩色图像。每个类别包含6000个图像。我们将使用Python的pickle模块来加载数据集。以下是加载数据集的代码: ```python import pickle import numpy as np def unpickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def load_cifar10_data(): xs = [] ys = [] for j in range(5): d = unpickle('cifar-10-batches-py/data_batch_%d' % (j + 1)) x = d[b'data'] y = d[b'labels'] xs.append(x) ys.append(y) d = unpickle('cifar-10-batches-py/test_batch') xs.append(d[b'data']) ys.append(d[b'labels']) x = np.concatenate(xs) / np.float32(255) y = np.concatenate(ys) return x.reshape((len(x), -1)), np.array(y) ``` 接下来,我们将使用SMO算法来训练SVM模型。以下是使用SMO算法训练SVM模型的代码: ```python class SVM: def __init__(self, C, toler, kernel_opt=('linear', 0)): self.C = C self.toler = toler self.kernel_opt = kernel_opt def fit(self, X, y): n_samples, n_features = X.shape alpha = np.zeros(n_samples) b = 0 kernel = kernel_set[self.kernel_opt[0]] K = np.zeros((n_samples, n_samples)) for i in range(n_samples): K[:, i] = kernel(X, X[i], self.kernel_opt[1]) iter = 0 while iter < max_iter: num_changed_alphas = 0 for i in range(n_samples): Ei = np.dot(alpha * y, K[:, i]) + b - y[i] if (y[i] * Ei < -self.toler and alpha[i] < self.C) or \ (y[i] * Ei > self.toler and alpha[i] > 0): j = np.random.choice([x for x in range(n_samples) if x != i]) Ej = np.dot(alpha * y, K[:, j]) + b - y[j] alpha_i_old, alpha_j_old = alpha[i], alpha[j] if y[i] != y[j]: L = max(0, alpha[j] - alpha[i]) H = min(self.C, self.C + alpha[j] - alpha[i]) else: L = max(0, alpha[i] + alpha[j] - self.C) H = min(self.C, alpha[i] + alpha[j]) if L == H: continue eta = 2.0 * K[i, j] - K[i, i] - K[j, j] if eta >= 0: continue alpha[j] -= y[j] * (Ei - Ej) / eta alpha[j] = min(alpha[j], H) alpha[j] = max(alpha[j], L) if abs(alpha[j] - alpha_j_old) < 1e-5: continue alpha[i] += y[i] * y[j] * (alpha_j_old - alpha[j]) b1 = b - Ei - y[i] * (alpha[i] - alpha_i_old) * K[i, i] - \ y[j] * (alpha[j] - alpha_j_old) * K[i, j] b2 = b - Ej - y[i] * (alpha[i] - alpha_i_old) * K[i, j] - \ y[j] * (alpha[j] - alpha_j_old) * K[j, j] if 0 < alpha[i] < self.C: b = b1 elif 0 < alpha[j] < self.C: b = b2 else: b = (b1 + b2) / 2 num_changed_alphas += 1 if num_changed_alphas == 0: iter += 1 else: iter = 0 self.X = X self.y = y self.kernel = kernel self.alpha = alpha self.b = b def predict(self, X): n_samples, n_features = X.shape K = np.zeros((n_samples, len(self.X))) for i in range(n_samples): K[i, :] = self.kernel(self.X, X[i], self.kernel_opt[1]) y_pred = np.dot(self.alpha * self.y, K) + self.b return np.sign(y_pred) ``` 最后,我们使用以下代码来加载数据集并使用SMO算法训练SVM模型: ```python X, y = load_cifar10_data() y[y == 0] = -1 X_train, X_test = X[:50000], X[50000:] y_train, y_test = y[:50000], y[50000:] svm = SVM(C=1.0, toler=0.001, kernel_opt=('rbf', 1)) svm.fit(X_train, y_train) y_pred_train = svm.predict(X_train) y_pred_test = svm.predict(X_test) train_acc = np.mean(y_train == y_pred_train) test_acc = np.mean(y_test == y_pred_test) print('train_acc:', train_acc) print('test_acc:', test_acc) ``` 这样我们就使用SMO算法编写了SVM对CIFAR-10数据进行分类的代码。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值