2022-04-05

[羊城杯 2020]Simple

from Crypto.Util.number import *
from Crypto.Cipher import DES
import gmpy2
from secret import flag
import random

key = "abcdefgh"

def des_encrypt(m):
    des = DES.new(key, DES.MODE_ECB)
    res = des.encrypt(m)
    return res

def gen_key():
    p = getPrime(2048)
    q = getPrime(2048)
    n = p * q
    bit = n.bit_length()
    phi_n = (p - 1) * (q - 1)
    num = random.randint(1, 100)
    while True:
        u = getPrime(bit / 4 - num)
        if gmpy2.gcd(u, phi_n) != 1:
            continue
        t = gmpy2.invert(u, phi_n)
        e = bytes_to_long(des_encrypt(long_to_bytes(t)))
        if gmpy2.gcd(e, phi_n) == 1:
            break
    return (n, e)

P = getPrime(1024)
Q = getPrime(1024)
N = P * Q
E = 65537
lcm = gmpy2.lcm(P-1, Q-1)
e1 = gmpy2.invert(getPrime(730), lcm)
e2 = gmpy2.invert(getPrime(730), lcm)
m = bytes_to_long(flag)
c = pow(m, E, N)
print "N = " + str(N)
print "e2 = " + str(e2)
print "c = " + str(c)
_n, _e = gen_key()
_c = pow(e1, _e, _n)
print "_n = " + str(_n)
print "_e = " + str(_e)
print "_c = " + str(_c)

# N = 14922959775784066499316528935316325825140011208871830627653191549546959775167708525042423039865322548420928571524120743831693550123563493981797950912895893476200447083386549353336086899064921878582074346791320104106139965010480614879592357793053342577850761108944086318475849882440272688246818022209356852924215237481460229377544297224983887026669222885987323082324044645883070916243439521809702674295469253723616677245762242494478587807402688474176102093482019417118703747411862420536240611089529331148684440513934609412884941091651594861530606086982174862461739604705354416587503836130151492937714365614194583664241
# e2 = 27188825731727584656624712988703151030126350536157477591935558508817722580343689565924329442151239649607993377452763119541243174650065563589438911911135278704499670302489754540301886312489410648471922645773506837251600244109619850141762795901696503387880058658061490595034281884089265487336373011424883404499124002441860870291233875045675212355287622948427109362925199018383535259913549859747158348931847041907910313465531703810313472674435425886505383646969400166213185676876969805238803587967334447878968225219769481841748776108219650785975942208190380614555719233460250841332020054797811415069533137170950762289
# c = 6472367338832635906896423990323542537663849304314171581554107495210830026660211696089062916158894195561723047864604633460433867838687338370676287160274165915800235253640690510046066541445140501917731026596427080558567366267665887665459901724487706983166070740324307268574128474775026837827907818762764766069631267853742422247229582756256253175941899099898884656334598790711379305490419932664114615010382094572854799421891622789614614720442708271653376485660139560819668239118588069312179293488684403404385715780406937817124588773689921642802703005341324008483201528345805611493251791950304129082313093168732415486813
# _n = 440489238264900860776949063845200558734341182253911040104689726634414488997095518284964514078079911856352824174173937251558842251349762631716798307360995414545464514355957499460396352456341058329671470384493547042182238690727766731554287411757022792467324815342497916894285866240516524768645049867582541899123632009100512965460004548382054578461249990158442675234477122521189649316341623637146867589119951831385717513964941787562068891523060843170463600255518728070958509224053460041184869943038887434435024428311063533345514827827485121055022245800823723487812635502090530820946638405345755666124356919178290008475459419571761406117827422883820901663916276191422633940699113760516149002609672230610575442643822241126824287790055264162725209120192661985259423924307785452001927701323647247782658775780117642900694831475681037634691806232211286493187121464506122012889644137364079403183353774265910554863733455161820449073656744610495110838881353269890437984975607744603113572453211439334880155671730821755361054781243639407912133971530394031933785051770725331242932929244719594830548310768937037042243794551163891451545574837838357398072638709907958216067999891842395376953596940377457308329336524488962532620850237570279134567668379
# _e = 861605654852236668414010386016782729745549477722901970933220380452652052018502113737968204529790495739233258572209422774257139256367928649554562561889013164344608269555777150446651170697255381344437283003508476336814132594917061838422072660017477530465048729471603537912401826065081663165440462979219418291010867656746870617893935758241591032350010782861988742885918015532494020406350897048575155800941991107973433915573030255070411073793489218782862225921465295055907689734413881263179029741870520797816282420230090879687287575328294171448819803530205292587159921154471289747571107461754730577787617451127061265552788125691266357724955508391085485034126227212788895416902189479587194999818764639403752596165043883295506465916277734482380252399557395621566461322664559344483889187037851178431011220134914560438657522787409632677020269086895142488669203469256629173438313487046130238010206678820035631793666627274457756812810094004185303422637897314225624079032617334487815628021058997628511963565055629435278956251869329025544623291223984190562109149316159243565323565271491356378189561005084676592786453581431393651385181326525455441155960432946682976515756161038293313433862078763004704003356983371787414787104076401121444383911561
# _c = 305937839546594439230463861584604201077374759167468410827830943528403007941779658881672477705113617614828611332427199124217887937391378281943856159571057598203709366891547401974326016980711130197275312149966105151573748299654404630150641461765232935912266448303266990247145252052886920248198006212876273661195636104435277145396636985516064154534488750879453474211852461463041960835745695368577903786702607508492658563272121038693371752289017330781719235752018697635304458321008407930986565779826278048082764754367267460637798512780153281325733348999426407049795270044819657399403071013496169060640127279409914638535996355848933378734045908205536540619564723586905257569498716707820544351092379516465943537383422680357333849248129118148543389733395686399565999586899123087310025442994131218237679518267106194962305629529210402269726736072967966518381350920965727690274018080619332676536005722214955949897632990356174168234408837737546230730400434240785496100281815168806724358191550743656843853383646410487436540166360406982096949178466861150173527305369007546917550634679211293496458282787881244581230558011582720632502886494712233308474151958909251857281750741736910202763888790654287328846201724930302778996046434656839999091303411

应该用扩展维纳攻击,文章1指路文章2指路

首先,需要先同des解密求出t,然后通过维纳攻击求出e1,最后通过扩展维纳攻击求m

求t

from Crypto.Util.number import *
from Crypto.Cipher import DES
from gmpy2 import *

key = "abcdefgh"

def des_decrypt(m):
    des = DES.new(key, DES.MODE_ECB)
    res = des.decrypt(m)
    return res

_n = 440489238264900860776949063845200558734341182253911040104689726634414488997095518284964514078079911856352824174173937251558842251349762631716798307360995414545464514355957499460396352456341058329671470384493547042182238690727766731554287411757022792467324815342497916894285866240516524768645049867582541899123632009100512965460004548382054578461249990158442675234477122521189649316341623637146867589119951831385717513964941787562068891523060843170463600255518728070958509224053460041184869943038887434435024428311063533345514827827485121055022245800823723487812635502090530820946638405345755666124356919178290008475459419571761406117827422883820901663916276191422633940699113760516149002609672230610575442643822241126824287790055264162725209120192661985259423924307785452001927701323647247782658775780117642900694831475681037634691806232211286493187121464506122012889644137364079403183353774265910554863733455161820449073656744610495110838881353269890437984975607744603113572453211439334880155671730821755361054781243639407912133971530394031933785051770725331242932929244719594830548310768937037042243794551163891451545574837838357398072638709907958216067999891842395376953596940377457308329336524488962532620850237570279134567668379
_e = 861605654852236668414010386016782729745549477722901970933220380452652052018502113737968204529790495739233258572209422774257139256367928649554562561889013164344608269555777150446651170697255381344437283003508476336814132594917061838422072660017477530465048729471603537912401826065081663165440462979219418291010867656746870617893935758241591032350010782861988742885918015532494020406350897048575155800941991107973433915573030255070411073793489218782862225921465295055907689734413881263179029741870520797816282420230090879687287575328294171448819803530205292587159921154471289747571107461754730577787617451127061265552788125691266357724955508391085485034126227212788895416902189479587194999818764639403752596165043883295506465916277734482380252399557395621566461322664559344483889187037851178431011220134914560438657522787409632677020269086895142488669203469256629173438313487046130238010206678820035631793666627274457756812810094004185303422637897314225624079032617334487815628021058997628511963565055629435278956251869329025544623291223984190562109149316159243565323565271491356378189561005084676592786453581431393651385181326525455441155960432946682976515756161038293313433862078763004704003356983371787414787104076401121444383911561
_c = 305937839546594439230463861584604201077374759167468410827830943528403007941779658881672477705113617614828611332427199124217887937391378281943856159571057598203709366891547401974326016980711130197275312149966105151573748299654404630150641461765232935912266448303266990247145252052886920248198006212876273661195636104435277145396636985516064154534488750879453474211852461463041960835745695368577903786702607508492658563272121038693371752289017330781719235752018697635304458321008407930986565779826278048082764754367267460637798512780153281325733348999426407049795270044819657399403071013496169060640127279409914638535996355848933378734045908205536540619564723586905257569498716707820544351092379516465943537383422680357333849248129118148543389733395686399565999586899123087310025442994131218237679518267106194962305629529210402269726736072967966518381350920965727690274018080619332676536005722214955949897632990356174168234408837737546230730400434240785496100281815168806724358191550743656843853383646410487436540166360406982096949178466861150173527305369007546917550634679211293496458282787881244581230558011582720632502886494712233308474151958909251857281750741736910202763888790654287328846201724930302778996046434656839999091303411
t = bytes_to_long(des_decrypt(long_to_bytes(_e)))
print(t)

然后就成功报错了
在这里插入图片描述改正方法:
在这里插入图片描述
DES解密函数不仅要求密文是Bytes类型的,key也要是Bytes型的
算出来t

95561077216813061093181320007007822986977895140874131099651357293153469665985877021866332828401466407289804262775293408866571597577852916392453434207623112450456933578949882413180762392796142573888818744053324165181879738745067822187821160977682158500905389529298716660344906259170939224956446174851792544356916552655577396726346832470867379266272057187231621550467540210563082235337547049339492207128678410950609737909165793025352524239718907267923713341963743809851078745880156610395788585427254471183083810863192809949371296743108500870594429649912233924671048180143115272630768524104476839006356939774781819753842732312258783446491619917762877500067537718143627060325885778186724668792644764125146198051709474581872074672249365471780103506531019122649167172880348207935636425183336991222058612523765477463260317855502969053328081643638463958673951014831686528841521488272557375564850158516017614029016085118775220628257863605306771875817975334133115159010799064014728368132063255201160835624658719601952075887933444823138668322674129291230227512884100618628215682095618509398936684522922847379029893559636668662956265516854078101663422142339548663584652990191097686341481312546863425884995974110189620698700581768423408658424277

然后进行第二步,通过维纳攻击求e1
用sage

_n = 440489238264900860776949063845200558734341182253911040104689726634414488997095518284964514078079911856352824174173937251558842251349762631716798307360995414545464514355957499460396352456341058329671470384493547042182238690727766731554287411757022792467324815342497916894285866240516524768645049867582541899123632009100512965460004548382054578461249990158442675234477122521189649316341623637146867589119951831385717513964941787562068891523060843170463600255518728070958509224053460041184869943038887434435024428311063533345514827827485121055022245800823723487812635502090530820946638405345755666124356919178290008475459419571761406117827422883820901663916276191422633940699113760516149002609672230610575442643822241126824287790055264162725209120192661985259423924307785452001927701323647247782658775780117642900694831475681037634691806232211286493187121464506122012889644137364079403183353774265910554863733455161820449073656744610495110838881353269890437984975607744603113572453211439334880155671730821755361054781243639407912133971530394031933785051770725331242932929244719594830548310768937037042243794551163891451545574837838357398072638709907958216067999891842395376953596940377457308329336524488962532620850237570279134567668379
_e = 861605654852236668414010386016782729745549477722901970933220380452652052018502113737968204529790495739233258572209422774257139256367928649554562561889013164344608269555777150446651170697255381344437283003508476336814132594917061838422072660017477530465048729471603537912401826065081663165440462979219418291010867656746870617893935758241591032350010782861988742885918015532494020406350897048575155800941991107973433915573030255070411073793489218782862225921465295055907689734413881263179029741870520797816282420230090879687287575328294171448819803530205292587159921154471289747571107461754730577787617451127061265552788125691266357724955508391085485034126227212788895416902189479587194999818764639403752596165043883295506465916277734482380252399557395621566461322664559344483889187037851178431011220134914560438657522787409632677020269086895142488669203469256629173438313487046130238010206678820035631793666627274457756812810094004185303422637897314225624079032617334487815628021058997628511963565055629435278956251869329025544623291223984190562109149316159243565323565271491356378189561005084676592786453581431393651385181326525455441155960432946682976515756161038293313433862078763004704003356983371787414787104076401121444383911561
_c = 305937839546594439230463861584604201077374759167468410827830943528403007941779658881672477705113617614828611332427199124217887937391378281943856159571057598203709366891547401974326016980711130197275312149966105151573748299654404630150641461765232935912266448303266990247145252052886920248198006212876273661195636104435277145396636985516064154534488750879453474211852461463041960835745695368577903786702607508492658563272121038693371752289017330781719235752018697635304458321008407930986565779826278048082764754367267460637798512780153281325733348999426407049795270044819657399403071013496169060640127279409914638535996355848933378734045908205536540619564723586905257569498716707820544351092379516465943537383422680357333849248129118148543389733395686399565999586899123087310025442994131218237679518267106194962305629529210402269726736072967966518381350920965727690274018080619332676536005722214955949897632990356174168234408837737546230730400434240785496100281815168806724358191550743656843853383646410487436540166360406982096949178466861150173527305369007546917550634679211293496458282787881244581230558011582720632502886494712233308474151958909251857281750741736910202763888790654287328846201724930302778996046434656839999091303411
t = 95561077216813061093181320007007822986977895140874131099651357293153469665985877021866332828401466407289804262775293408866571597577852916392453434207623112450456933578949882413180762392796142573888818744053324165181879738745067822187821160977682158500905389529298716660344906259170939224956446174851792544356916552655577396726346832470867379266272057187231621550467540210563082235337547049339492207128678410950609737909165793025352524239718907267923713341963743809851078745880156610395788585427254471183083810863192809949371296743108500870594429649912233924671048180143115272630768524104476839006356939774781819753842732312258783446491619917762877500067537718143627060325885778186724668792644764125146198051709474581872074672249365471780103506531019122649167172880348207935636425183336991222058612523765477463260317855502969053328081643638463958673951014831686528841521488272557375564850158516017614029016085118775220628257863605306771875817975334133115159010799064014728368132063255201160835624658719601952075887933444823138668322674129291230227512884100618628215682095618509398936684522922847379029893559636668662956265516854078101663422142339548663584652990191097686341481312546863425884995974110189620698700581768423408658424277

def possible_phi(e,alist,N): 
    for x in alist:
        if x==0:
            continue
        phi = floor(e*(1/x))
        if (N-phi+1)%2==0 and sqrt(pow((N-phi+1)//2,2)-N).is_integer():
                (p,q)=var('p,q')
                x=solve([(p-1)*(q-1)==phi, p*q==N],p,q)
                return int(str(x[0][0]).split('==')[1])
        else:
            continue

def wiener_attack(e,N):
    c=continued_fraction(e/N)
    alist=c.convergents()
    return possible_phi(e,alist,N)

p = wiener_attack(t,_n)
#p = 19264953060573354152088370022137347843372038705938727274045584770270219723662509372257332556183567230642343935007604082786773908834507689431186383412071058259541476266919416080039861225024448531158114574145554564022730469627597355435270855539517518409560015216943685471530116511513636272584701192733011822927999470250332801570140194232021468626841753869502055761504745759903801611113500391141999619442402277579074037471801982605177523331564583853413101873539220382589923070411342245074186744665659067941370003705158001680825380979002436082583656772216545995937793154893096726159238228165855471788102432999738097158731
q = _n//p
# q = 22864796860906093199694067991790516555118020107383902324997352449757876818212314084781017210865185869334088946871030984503845304362374554974827811579121746069166015978145633260111202926557204230850698926092200533444144199730624941169883034998427847708114417543702835167646938045946842671828420614018770449420415232485596848779660303926871762030451031914921298265052938388183729420238858156081251210048035031998247354995627059059169910852997407613286110114801656460573047520996236216358033966503419383064725149303693997672994102704389524362390287055938893747286925709016491994129007736211787027450456149376729714605809
#sage: q*p == _n
#True
_d = inverse_mod(_e,(p-1)*(q-1))
# _d = 180018503995141646953833041997070819173049264489369368723776155389766015149941948727052486160440922831459785132592892819210724691024672462948323968524270463943482758645626202403346996632046726689991288327153631513751617989903897005641707509179541180582632486140287246834225703673233541254635911484634676527934844294995799299180362485730397976668912218155541687329571924783720649211487807974401110847138226237712964717203906391971790439789751581307712701991583203492378292628975329107839951048572093669697493284871425576806442919966058846402753272628258787754470478278240676905819717883402173884097064266544567293517816416264012487691487072258440075601921345615338864845574015901303069876527506618695010863773475771645449736119880709342656288873606922547510812197165685569928974831770619985326953412777033965600690203191462423936571099846712892167703439468042711231281265527617930057687544988785136257233902313404378127608804088996454411281816006299397686684826257392546226903712919661072058949720560184099610679394334991337665790509706089963138070170596521115527410725542315705000791844333285863385127199956760686113083516485160948048152165148831892031530917313344211276226219563417820654495543901937105599761280237548076572660235161
e1 = pow(_c,_d,_n)
# e1 = 114552459553730357961013268333698879659007919035942930313432809776799669181481660306531243618160127922304264986001501784564575128319884991774542682853466808329973362019677284072646678280051091964555611220961719302320547405880386113519147076299481594997799884384012548506240748042365643212774215730304047871679706035596550898944580314923260982768858133395187777029914150064371998328788068888440803565964567662563652062845388379897799506439389461619422933318625765603423604615137217375612091221578339493263160670355032898186792479034771118678394464854413824347305505135625135428816394053078365603937337271798774138959

最后一步,通过扩展维纳攻击求m
依旧用sage,构建格子

e1 = 114552459553730357961013268333698879659007919035942930313432809776799669181481660306531243618160127922304264986001501784564575128319884991774542682853466808329973362019677284072646678280051091964555611220961719302320547405880386113519147076299481594997799884384012548506240748042365643212774215730304047871679706035596550898944580314923260982768858133395187777029914150064371998328788068888440803565964567662563652062845388379897799506439389461619422933318625765603423604615137217375612091221578339493263160670355032898186792479034771118678394464854413824347305505135625135428816394053078365603937337271798774138959
N = 14922959775784066499316528935316325825140011208871830627653191549546959775167708525042423039865322548420928571524120743831693550123563493981797950912895893476200447083386549353336086899064921878582074346791320104106139965010480614879592357793053342577850761108944086318475849882440272688246818022209356852924215237481460229377544297224983887026669222885987323082324044645883070916243439521809702674295469253723616677245762242494478587807402688474176102093482019417118703747411862420536240611089529331148684440513934609412884941091651594861530606086982174862461739604705354416587503836130151492937714365614194583664241
e2 = 27188825731727584656624712988703151030126350536157477591935558508817722580343689565924329442151239649607993377452763119541243174650065563589438911911135278704499670302489754540301886312489410648471922645773506837251600244109619850141762795901696503387880058658061490595034281884089265487336373011424883404499124002441860870291233875045675212355287622948427109362925199018383535259913549859747158348931847041907910313465531703810313472674435425886505383646969400166213185676876969805238803587967334447878968225219769481841748776108219650785975942208190380614555719233460250841332020054797811415069533137170950762289
c = 6472367338832635906896423990323542537663849304314171581554107495210830026660211696089062916158894195561723047864604633460433867838687338370676287160274165915800235253640690510046066541445140501917731026596427080558567366267665887665459901724487706983166070740324307268574128474775026837827907818762764766069631267853742422247229582756256253175941899099898884656334598790711379305490419932664114615010382094572854799421891622789614614720442708271653376485660139560819668239118588069312179293488684403404385715780406937817124588773689921642802703005341324008483201528345805611493251791950304129082313093168732415486813

a = 5 / 14
M1 = int(pow(N, 0.5))
M2 = int(pow(N, 1 + a))
L2 = matrix(ZZ, [[N, -M1 * N, 0, N ** 2],
                 [0, M1 * e1, -M2 * e1, -e1 * N],
                 [0, 0, M2 * e2, -e2 * N],
                 [0, 0, 0, e1 * e2]])
B = L2.LLL()[0]
A = B * L2 ^ (-1)
phi = int(e1 * A[1] // A[0])
pow(c, inverse_mod(0x10001, phi), N)

最后将得到的数转数字就好了
在这里插入图片描述b'GWHT{3da44ca8379b98fdc1c86f9b34dcc1ef}'

参考1
参考2

  • 0
    点赞
  • 1
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页
评论

打赏作者

无名函数

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值