[羊城杯 2020]Simple extend wiener attack

from Crypto.Util.number import *
from Crypto.Cipher import DES
import gmpy2
from secret import flag
import random

key = "abcdefgh"

def des_encrypt(m):
    des = DES.new(key, DES.MODE_ECB)
    res = des.encrypt(m)
    return res

def gen_key():
    p = getPrime(2048)
    q = getPrime(2048)
    n = p * q
    bit = n.bit_length()
    phi_n = (p - 1) * (q - 1)
    num = random.randint(1, 100)
    while True:
        u = getPrime(bit / 4 - num)#924-1023   e公钥
        if gmpy2.gcd(u, phi_n) != 1:
            continue
        t = gmpy2.invert(u, phi_n)#d 私钥
        e = bytes_to_long(des_encrypt(long_to_bytes(t)))
        if gmpy2.gcd(e, phi_n) == 1:
            break
    return (n, e)

P = getPrime(1024)
Q = getPrime(1024)
N = P * Q
E = 65537
lcm = gmpy2.lcm(P-1, Q-1)
e1 = gmpy2.invert(getPrime(730), lcm)
e2 = gmpy2.invert(getPrime(730), lcm)
m = bytes_to_long(flag)
c = pow(m, E, N)
print "N = " + str(N)
print "e2 = " + str(e2)
print "c = " + str(c)
_n, _e = gen_key()
_c = pow(e1, _e, _n)
print "_n = " + str(_n)
print "_e = " + str(_e)
print "_c = " + str(_c)

# N = 14922959775784066499316528935316325825140011208871830627653191549546959775167708525042423039865322548420928571524120743831693550123563493981797950912895893476200447083386549353336086899064921878582074346791320104106139965010480614879592357793053342577850761108944086318475849882440272688246818022209356852924215237481460229377544297224983887026669222885987323082324044645883070916243439521809702674295469253723616677245762242494478587807402688474176102093482019417118703747411862420536240611089529331148684440513934609412884941091651594861530606086982174862461739604705354416587503836130151492937714365614194583664241
# e2 = 27188825731727584656624712988703151030126350536157477591935558508817722580343689565924329442151239649607993377452763119541243174650065563589438911911135278704499670302489754540301886312489410648471922645773506837251600244109619850141762795901696503387880058658061490595034281884089265487336373011424883404499124002441860870291233875045675212355287622948427109362925199018383535259913549859747158348931847041907910313465531703810313472674435425886505383646969400166213185676876969805238803587967334447878968225219769481841748776108219650785975942208190380614555719233460250841332020054797811415069533137170950762289
# c = 6472367338832635906896423990323542537663849304314171581554107495210830026660211696089062916158894195561723047864604633460433867838687338370676287160274165915800235253640690510046066541445140501917731026596427080558567366267665887665459901724487706983166070740324307268574128474775026837827907818762764766069631267853742422247229582756256253175941899099898884656334598790711379305490419932664114615010382094572854799421891622789614614720442708271653376485660139560819668239118588069312179293488684403404385715780406937817124588773689921642802703005341324008483201528345805611493251791950304129082313093168732415486813
# _n = 440489238264900860776949063845200558734341182253911040104689726634414488997095518284964514078079911856352824174173937251558842251349762631716798307360995414545464514355957499460396352456341058329671470384493547042182238690727766731554287411757022792467324815342497916894285866240516524768645049867582541899123632009100512965460004548382054578461249990158442675234477122521189649316341623637146867589119951831385717513964941787562068891523060843170463600255518728070958509224053460041184869943038887434435024428311063533345514827827485121055022245800823723487812635502090530820946638405345755666124356919178290008475459419571761406117827422883820901663916276191422633940699113760516149002609672230610575442643822241126824287790055264162725209120192661985259423924307785452001927701323647247782658775780117642900694831475681037634691806232211286493187121464506122012889644137364079403183353774265910554863733455161820449073656744610495110838881353269890437984975607744603113572453211439334880155671730821755361054781243639407912133971530394031933785051770725331242932929244719594830548310768937037042243794551163891451545574837838357398072638709907958216067999891842395376953596940377457308329336524488962532620850237570279134567668379
# _e = 861605654852236668414010386016782729745549477722901970933220380452652052018502113737968204529790495739233258572209422774257139256367928649554562561889013164344608269555777150446651170697255381344437283003508476336814132594917061838422072660017477530465048729471603537912401826065081663165440462979219418291010867656746870617893935758241591032350010782861988742885918015532494020406350897048575155800941991107973433915573030255070411073793489218782862225921465295055907689734413881263179029741870520797816282420230090879687287575328294171448819803530205292587159921154471289747571107461754730577787617451127061265552788125691266357724955508391085485034126227212788895416902189479587194999818764639403752596165043883295506465916277734482380252399557395621566461322664559344483889187037851178431011220134914560438657522787409632677020269086895142488669203469256629173438313487046130238010206678820035631793666627274457756812810094004185303422637897314225624079032617334487815628021058997628511963565055629435278956251869329025544623291223984190562109149316159243565323565271491356378189561005084676592786453581431393651385181326525455441155960432946682976515756161038293313433862078763004704003356983371787414787104076401121444383911561
# _c = 305937839546594439230463861584604201077374759167468410827830943528403007941779658881672477705113617614828611332427199124217887937391378281943856159571057598203709366891547401974326016980711130197275312149966105151573748299654404630150641461765232935912266448303266990247145252052886920248198006212876273661195636104435277145396636985516064154534488750879453474211852461463041960835745695368577903786702607508492658563272121038693371752289017330781719235752018697635304458321008407930986565779826278048082764754367267460637798512780153281325733348999426407049795270044819657399403071013496169060640127279409914638535996355848933378734045908205536540619564723586905257569498716707820544351092379516465943537383422680357333849248129118148543389733395686399565999586899123087310025442994131218237679518267106194962305629529210402269726736072967966518381350920965727690274018080619332676536005722214955949897632990356174168234408837737546230730400434240785496100281815168806724358191550743656843853383646410487436540166360406982096949178466861150173527305369007546917550634679211293496458282787881244581230558011582720632502886494712233308474151958909251857281750741736910202763888790654287328846201724930302778996046434656839999091303411

代码审计:

已知key,可以根据_e来恢复t,发现t很大,直接用wiener attack来得到u,已知u和t,又根据

t = gmpy2.invert(u, phi_n)  关系类似于 d=gmpy2.invert(e, phi_n) 而在rsa中已知n、e、d是可以分解n 的,由此得到p、q,然后就可以求解e1。

现在的问题就成了已知e1,e2,并给出以下两个方程:

e1 = gmpy2.invert(getPrime(730), lcm)
e2 = gmpy2.invert(getPrime(730), lcm)

 根据这个来分解n

我的想法:

上式可以写为:

e1*t1 \equiv 1 (mod(lcm))

e2*t2 \equiv 1 (mod(lcm))

所以有

e1*t1=k*lcm+1

e2*t2=k*lcm+1

因为两组式子中e和lcm阶数相差很小,所以在

\frac{lcm}{e1}\approx \frac{t1}{k}  式中,我认为lcm/e1的值在1000以内,且lcm\approx \frac{e1*t1}{k},

所以t1/k1的值与lcm/e1近似,所以

\frac{e1*t1}{k1}\approx \frac{e2*t2}{k2}

由此有了爆破出t1/k1,t2/k2的可能性

但是由于在python中小数和一个大整数相乘无法处理,只能无奈取看看wp

看到此题考查的是扩展维纳攻击,在ctfwiki上可以看到

 这里和我的想法有些许的相同之处,想用连分数的方法来求得k1d2并分解,但仅仅凭此好像还没有号的方法来求出k1,d2。

我们来看下面介绍的扩展维纳攻击

相比ctfwiki,我找到一篇更好的讲解:

密码学硬核笔记——扩展维纳攻击_Gm1y的博客-CSDN博客_扩展维纳攻击

首先我们知道

                                                    edg=k(p-1)(q-1)+g

令  s=1-p-q

所以                                            edg-kN=g+ks (W)

这里讨论当对于一个N来说有两个e_{i}的情况,且都对应较小的d_i,可以得到:

                                                                                                                                                                                  化简后,得到

e_1d_1k_2-e_2d_2k_1=k_2-k_1   (G(1,2))

W*k2:

e_1d_1gk_2-k_1Nk_2=gk_2+k_1sk_2

W1W2:

d_1d_2g^2e_1e_2-d_1gk_2e_1N-d_2gk_1e_2N+k_1k_2N^2=(g+k_1s)(g+k_2s)

从而构造出都是已知数的矩阵L:

       

 (球球教教孩子怎么在csdn上敲这些东西啊,不会啊)

得到:

 可知,如果B是格L的最短向量的话,就可以通过LLL算法求解

我们设                                                             

 d_i\approx N^{\alpha}

那么

 根据Minkowoski 's first theorem,只有满足:

                                                \lambda _1(L)<=\sqrt{n}det(L)^{\frac{1}{n}}

才可以称作是最短向量:

但是将右边计算得到N,但是∥B∥>N,因此我们需要对矩阵的列乘上一个倍数:

M_1=N^{\frac{1}{2}},M_2=N^{1+\alpha},将M1,M2乘到第二列和第三列,将N乘到第一列,得到

 所以:

 要使得不等式成立,需要

 得到                               

        `                                                          \alpha<=\frac{5}{14}

 求出了alpha,带入M2,用LLL算法求出最短向量B2,乘上L2的逆求出A,利用A的前两项求出phi

下面我们对以上扩展维纳进行复现:

我们前面已经求出了e1

给出后半部分的扩展维纳攻击,需要用到sagemath:

e1=114552459553730357961013268333698879659007919035942930313432809776799669181481660306531243618160127922304264986001501784564575128319884991774542682853466808329973362019677284072646678280051091964555611220961719302320547405880386113519147076299481594997799884384012548506240748042365643212774215730304047871679706035596550898944580314923260982768858133395187777029914150064371998328788068888440803565964567662563652062845388379897799506439389461619422933318625765603423604615137217375612091221578339493263160670355032898186792479034771118678394464854413824347305505135625135428816394053078365603937337271798774138959
N = 14922959775784066499316528935316325825140011208871830627653191549546959775167708525042423039865322548420928571524120743831693550123563493981797950912895893476200447083386549353336086899064921878582074346791320104106139965010480614879592357793053342577850761108944086318475849882440272688246818022209356852924215237481460229377544297224983887026669222885987323082324044645883070916243439521809702674295469253723616677245762242494478587807402688474176102093482019417118703747411862420536240611089529331148684440513934609412884941091651594861530606086982174862461739604705354416587503836130151492937714365614194583664241
e2 = 27188825731727584656624712988703151030126350536157477591935558508817722580343689565924329442151239649607993377452763119541243174650065563589438911911135278704499670302489754540301886312489410648471922645773506837251600244109619850141762795901696503387880058658061490595034281884089265487336373011424883404499124002441860870291233875045675212355287622948427109362925199018383535259913549859747158348931847041907910313465531703810313472674435425886505383646969400166213185676876969805238803587967334447878968225219769481841748776108219650785975942208190380614555719233460250841332020054797811415069533137170950762289
c = 6472367338832635906896423990323542537663849304314171581554107495210830026660211696089062916158894195561723047864604633460433867838687338370676287160274165915800235253640690510046066541445140501917731026596427080558567366267665887665459901724487706983166070740324307268574128474775026837827907818762764766069631267853742422247229582756256253175941899099898884656334598790711379305490419932664114615010382094572854799421891622789614614720442708271653376485660139560819668239118588069312179293488684403404385715780406937817124588773689921642802703005341324008483201528345805611493251791950304129082313093168732415486813

a=5/14
M1=int(N^0.5)
M2=int(N^(1+a))

L2=Matrix(ZZ,[[N,   -M1*N,   0    ,    N^2],
			 [0,    M1*e1,  -M2*e1,  -e1*N],
			 [0,        0,   M2*e2,  -e2*N],
			 [0,        0,       0,  e1*e2]])

B=L2.LLL()[0]
A=B*L2^(-1)

phi=(e1*A[1]//A[0])
d=gmpy2.invert(int(E),int(phi))
m=int(pow(c,d,N))

print(long_to_bytes(m))

 我们讨论完了已知两个e的情况,在ctfwiki上,有三组、四组甚至更多组,在明白原理后可以自行推到。难点主要在矩阵的alpha的选取上。反正我是看不明白,嘿嘿开溜。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Paintrain

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值