《密码编码学与网络安全原理与实践》第二章第五章数学基础

《密码编码学与网络安全原理与实践》

第二章 数论基础

欧几里得定理:用辗转相除法求最大公因子 g c d ( a , b ) = g c d ( b , a m o d b ) gcd(a,b) = gcd(b, a mod b) gcd(a,b)=gcd(b,amodb)

扩展欧几里得定理:得到 g c d ( a , b ) = x ∗ a + y ∗ b gcd(a,b) = x*a+y*b gcd(a,b)=xa+yb

费马小定理 a p − 1 ≡ 1 m o d p a^{p-1} \equiv 1 mod p ap11modp(a和p互素)

欧拉定理 a φ ( p ) ≡ 1 m o d p a^{\varphi(p)} \equiv 1 mod p aφ(p)1modp

欧拉函数:小于n且与n互素的正整数的个数。

φ ( p ) \varphi(p) φ(p)当p为素数时, φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1

p = a ∗ b p = a*b p=ab时为 φ ( p ) = φ ( a ) ∗ φ ( b ) \varphi(p)=\varphi(a)*\varphi(b) φ(p)=φ(a)φ(b)

素性检测(Miller-Rabin概率算法):

TEST(n)
1.找出整数k,q,其中k<0,q是奇数,使(n-1=(2**k)*q)2.随机选取整数a,满足1<a<n-1;
3.if a**q mod n = 1,then返回“不确定”;
4.for j=0 to k-1 do
5.if a**((2**j)*q) mod n = n-1,then返回“不确定”;
6.返回“合数”

中国剩余定理(孙子定理)(CRT):
对于 { x m o d    m 1 = b 1 x m o d    m 2 = b 2 . . . . . . x m o d    m k = b k \begin{cases} x \mod m_1 =b_1 \\ x \mod m_2 = b_2 \\...... \\ x \mod m_k = b_k \end{cases} xmodm1=b1xmodm2=b2......xmodmk=bk
计算 M = m 1 ∗ m 2 ∗ . . . ∗ m k ; M i = M m i ; M i ′ ≡ M i − 1 m o d    m i ; M=m_1 * m_2 *... * m_k;M_i=\frac{M}{m_i};M_i' \equiv M_i^{-1} \mod m_i; M=m1m2...mk;Mi=miM;MiMi1modmi;
唯一解: x ≡ b 1 M 1 M 1 ′ + b 2 M 2 M 2 ′ + . . . + b k M k M k ′ m o d    M x \equiv b_1M_1M_1' + b_2M_2M_2' +... +b_kM_kM_k' \mod M xb1M1M1+b2M2M2+...+bkMkMkmodM

另一种形式: M = ∏ i = 1 k m i M=\prod_{i=1}^k m_i M=i=1kmi,其中 m i m_i mi是两两互素的,我们可以将 Z M Z_M ZM中任一整数对应一个 k k k元组,该 k k k元组的元素均在 Z m i Z_{m_i} Zmi中,这种对应关系即为 A ↔ ( a 1 , a 2 , . . . , a k ) A\leftrightarrow(a_1,a_2,...,a_k) A(a1,a2,...,ak),其中 A ∈ Z M A\in Z_M AZM,对 1 ≤ i ≤ k , a i ∈ Z m i 1 \le i \le k,a_i \in Z_{m_i} 1ik,aiZmi,且 a i = A m o d    m i a_i=A \mod m_i ai=Amodmi

两个断言: A A A和其 k k k元组是一一对应的; Z M Z_M ZM中元素上的运算可等价于对应的 k k k元组上的运算。

离散对数问题:对于任何整数 b b b和素数 p p p的本原根 a a a,有唯一的幂 i i i使得 b ≡ a i m o d    p , 0 ≤ i ≤ ( p − 1 ) b \equiv a^i \mod p,0 \le i \le (p-1) baimodp,0i(p1)
该指数 i i i成为以 a a a为底(模 p p p)的 b b b的离散对数,记作 d l o g a , p ( b ) dlog_{a,p}(b) dloga,p(b)
求解离散对数的方法:常规算法、Giant-Step-Baby-Step算法、Index Calculus算法,都需要很大的运算量

求乘法逆元的两种方式:用费马小定理然后求 a p − 2 a^{p-2} ap2或者用扩展欧几里得然后求 1 = a ∗ b − k ∗ p 1=a*b-k*p 1=abkp得到 b b b a a a p p p的逆元。

次数:由Euler定理,gcd(a, m)=1,有 a φ ( m ) ≡ 1 m o d    m a^{\varphi(m)} \equiv 1 \mod m aφ(m)1modm,所以 a 0 , a 1 , a 2 , . . . a^0,a^1,a^2,... a0,a1,a2,...序列一定出现周期性循环,将使得上述序列出现重复的最小正整数 k k k称为 a a a m m m的次数。一定有 k ∣ φ ( m ) k | \varphi(m) kφ(m),但 k = φ ( m ) k= \varphi(m) k=φ(m)不一定成立。
例: m = 8 m=8 m=8,则对于所有奇数 x > 1 , x 2 ≡ 1 m o d    8 x>1,x^2 \equiv1 \mod 8 x>1x21mod8,所以 x x x模8的次数为2

原根:如果 a a a m m m的次数为 φ ( m ) \varphi(m) φ(m),则称 a a a是模 m m m的一个原根。并非所有 m m m都有原根。原根个数为 φ ( φ ( m ) ) \varphi(\varphi(m)) φ(φ(m))个。

第五章 有限域

G G G是一个集合,定义了 G × G → G G×G → G G×GG上的二元运算 • • ,若满足下面条件称 ( G , • ) (G, •) (G,)为一个
封闭性:若 a , b ∈ G a,b\in G a,bG,则 a • b ∈ G a•b \in G abG
结合律:若 a , b , c ∈ G a,b,c \in G a,b,cG,则 ( a • b ) • c = a • ( b • c ) (a•b)•c=a•(b•c) (ab)c=a(bc)
单位元:存在一个元素 e ∈ G e \in G eG,使得对于任意 a ∈ G a \in G aG e • a = a • e = a e•a=a•e=a ea=ae=a;
逆元:对于任意 a ∈ G a \in G aG,都存在一个元素 b ∈ G b\in G bG,使得 a • b = b • a = e a•b=b•a=e ab=ba=e

一个群 ( G , • ) (G, •) (G,)满足交换律,称作交换群。即 a , b ∈ G a,b\in G a,bG,有 a • b = b • a a•b=b•a ab=ba,交换群也称Abel群
若群 ( G , • ) (G, •) (G,)中元素的个数 ∣ G ∣ |G| G是有限的,称 G G G有限群

对于 G G G中的元素 a a a,计算 a , a 2 = a • a , … , a i = a • a i − 1 , … , i = 1 , 2 , 3 , … a,a^2=a•a,…,a^i=a•a^{i-1} ,…, i=1,2,3,… a,a2=aa,,ai=aai1,,i=1,2,3,
若存在 m m m使得 a m = 1 a^m=1 am=1,称 a a a阶(order) 有限;否则 a a a的阶无穷
a a a的阶有限,使得 a m = 1 a^m=1 am=1的最小正整数 m m m称为元素 a a a的阶。

G G G的元素 a a a m m m阶元,则 1 , a , a 2 , a 3 , . . . , a m − 1 {1,a,a^2,a^3,...,a^{m-1}} 1,a,a2,a3,...,am1构成 G G G的子群;
称形如 1 , a , a 2 , a 3 , . . . , a m − 1 {1,a,a^2,a^3,...,a^{m-1}} 1,a,a2,a3,...,am1的群为循环群,元素 a a a是群的生成元
定理:设群 G G G为阶为 n n n的群,那么它的所有的子群的阶都可以整除 n n n

R R R是一个集合, • • + + +是定义在 R R R上的两个运算。如果满足条件: ( R , + ) (R,+) (R,+)是一个Abel加法群,其单位元用 0 0 0表示;乘法对于加法满足分配律,则称 ( R , + , • ) (R,+, • ) (R,+,)为一个环(Ring)

一个环 ( R , + , • ) (R,+, • ) (R,+,)满足 ( R , • ) (R, • ) (R,)可交换、有单位元、无零因子,则被称作整环
一个环 ( F , + , • ) (F,+, • ) (F,+,)满足 ( F − { 0 } , • ) (F-\{0\}, • ) (F{0},)是一个Abel乘法群,其单位元用 1 1 1表示,则被称作域(Field)

有限域:域中元素个数有限
有限域 G F ( p ) GF(p) GF(p):阶为p的有限域
有限域 G F ( 2 n ) GF(2^n) GF(2n):阶为 2 n 2^n 2n的有限域
在这里插入图片描述
多项式运算,包括加法减法乘法
即使系数集是一个域,除法也不一定是整除
F F F上的多项式 f ( x ) f(x) f(x)被称为不可约的(既约的)当且仅当 f ( x ) f(x) f(x)不能表示为两个多项式的积。与整数相似,一个不可约多项式也被成为素多项式
Euclid算法可以用来求两个多项式的最大公因式,扩展欧几里得算法可以用来求一个多项式的乘法逆元。
不可约多项式的根 g g g是这个不可约多项式定义的有限域的生成元。(当 f ( b ) = 0 f(b)=0 f(b)=0 b b b f ( x ) f(x) f(x)的根)

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值