提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
数值分析 (numerical analysis),为 数学 的一个 分支 ,是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科。 它以 数字计算机 求解数学问题的理论和方法为研究对象,为 计算数学 的主体部分。
提示:以下是本篇文章正文内容,下面案例可供参考
一、初步了解算法
例:计算多项式 0.0625x^4 +0.425x^3 +1.215x^2+1.912x+2.1296的值(给定任意值x)
算法1:按原形计算:10次乘法,4次加法;
算法2:上述多项式化为:(((0.0625x+0.425)x+1.215)x+1.912)x+2.1296,每一个括号里是一次乘法和一次加法,则需要4次乘法,4次加法;
算法3:上述化为:[(0.5x+0.6)^2+ 0.5x+0.7][(0.5x+0.6)^2+0.8]+0.9,则需要3次乘法,5次加法;
综上,算法是基于计算机的计算,高效的运算方法的设计是解决问题的重要方面。
二、解题时遇到的难解之处
例:解下面线性方程组(有唯一解)
a11x1+a12x2+…+a1nxn=b1;
a21x1+a22x2+…+a2nxn=b2;
…
an1x1+an2x2+…+annxn=bn;
按照cramer法则求解,即xk=Dk/D,k=1,2,3,4…n
D=|a11 a12…a1n|
***|a21 a22…a2n|
***|顶顶顶顶顶顶|
**|an1 an2…ann|(这是一个行列式哈哈哈)
Dk就是把其中D中的k列换成(b1 b2 b3…bn)T
D要算一个行列式,Dk们是n+1个行列式,xk=Dk/D这里需要n次除法;
D=ai1Ai1+ai2Ai2+…+ainAin(i=1,2,3,4,5,6…n)
每一个代数余子式的计算和上列计算类似进行展开的循环,只不过规模缩减至n-1,所以每个行列式所包含的乘积个数是n(n-1)…*1=n!;每个成绩共需要进行n-1次乘法,所以一共要做的乘法数为An=(n+1)!(n-1)+n;(除法也当作特殊的乘法)
然鹅
当n=20时,A20约等于9.7乘以10^20,要知道计算机1GHZ差不多等价于10亿次每秒的计算量,计算机要计算这个结果需要耗时上万年,因此这个地方就出现了理论可行,实际无实操性的问题,也因此体现出算法的重要性。