耐心排序的规则
其实最长递增子序列和一种叫做 patience game 的纸牌游戏有关,甚至有一种排序方法就叫做 patience sorting(耐心排序,复杂度为
n
l
o
g
n
nlogn
nlogn)。而这个排序的本质是由二分查找实现的。
其规则为:
1、依次抽牌、压牌,但是只能把点数小的牌压到点数比它大的牌上。
2、如果当前牌点数较大没有可以放置的堆,则新建一个堆,把这张牌放进去。
3、如果当前牌有多个堆可供选择,则选择最左边的那一堆放置。
按照上述规则执行,可以算出最长递增子序列,牌的堆数就是最长递增子序列的长度。其中,第三个规则的实现就用寻找左侧边界的二分查找!
耐心排序的实现
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
//先建立好牌组
vector<int>top(n);
//记录牌堆个数
int ans = 0;
//开始放每个牌
for(int i=0;i<n;++i)
{
int card = nums[i];
//第一个牌堆和最后一个牌堆
int left = 0,right = ans-1;
while(left <= right)
{
int mid = left+(right-left)/2;
//当前牌小于牌顶即满足条件
if(card <= top[mid]) right = mid-1;
else left = mid+1;
}
if(left == ans) ++ans;//相当于查找超界
//放入牌
top[left] = card;
}
return ans;
}
};
二维的最大的递增子序列
先对宽度 w 进行升序排序,如果遇到 w 相同的情况,则按照高度 h 降序排序(这是因为一个宽度w只能有一个信封存在,所以索性将最大h的排在最前面,即这样可以专注于h,而不必担心选择多个w相同的信封);之后把所有的 h 作为一个数组,在这个数组上计算 LIS 的长度就是答案。
class Solution {
public:
int maxEnvelopes(vector<vector<int>>& envelopes) {
int n = envelopes.size();
sort(envelopes.begin(),envelopes.end(),[](vector<int> &a,vector<int>& b){return a[0]==b[0]?
a[1]>b[1]:a[0]<b[0];});
//下面的就是耐心排序!
vector<int>top(n,0);
int ans = 0;
for(int i=0;i<n;++i)
{
int card = envelopes[i][1];
int left = 0,right = ans-1;
while(left<=right)
{
int mid = left+(right-left)/2;
if(card<=top[mid]) right = mid-1;
else left = mid+1;
}
if(left == ans) ++ans;
top[left] = card;
}
return ans;
}
};