在Transformer模型中,前馈神经网络位于Transformer的每个编码器和解码器层之后
前馈神经网络是一个全连接的前馈神经网络,由两个线性变换和一个非线性激活函数组成
其中两个线性变换之间通常会插入激活函数
FFN的设计旨在对嵌入向量进行非线性变换和映射
Transformer中,FFN会对序列中的每个位置进行相同的变换,而不考虑序列的顺序
这种位置独立的特性使得Transformer能够并行计算,加快了训练和推理的速度
当多层的FFN堆叠起来,它就有了深度神经网络的近似能力
两层的FFN就具备强大的拟合能力
前馈神经网络的作用是对位置编码或解码后的向量进行全连接变换
通过增加前馈神经网络的深度和宽度,Transformer模型可以更好地捕捉输入序列的全局依赖性
在数据足够多的时候,足够宽的两层网络可以逼近任意连续函数