(学习)前馈神经网络

在Transformer模型中,前馈神经网络位于Transformer的每个编码器和解码器层之后

前馈神经网络是一个全连接的前馈神经网络,由两个线性变换和一个非线性激活函数组成

其中两个线性变换之间通常会插入激活函数

FFN的设计旨在对嵌入向量进行非线性变换和映射

Transformer中,FFN会对序列中的每个位置进行相同的变换,而不考虑序列的顺序

这种位置独立的特性使得Transformer能够并行计算,加快了训练和推理的速度

当多层的FFN堆叠起来,它就有了深度神经网络的近似能力

两层的FFN就具备强大的拟合能力

前馈神经网络的作用是对位置编码或解码后的向量进行全连接变换

通过增加前馈神经网络的深度和宽度,Transformer模型可以更好地捕捉输入序列的全局依赖性

在数据足够多的时候,足够宽的两层网络可以逼近任意连续函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值