【论文阅读】循环变分自编码器(SABeR-VAE)

示例图片

Structural Attention-Based Recurrent Variational Autoencoder for Highway Vehicle Anomaly Detection
基于结构注意的公路车辆异常检测递归变分自动编码器

论文专栏 | 博客主页

.


  • 论文提出了一种名为SABeR-VAE的全新无监督框架,利用注意力机制结合道路结构信息和车辆之间的互动,提升异常检测的准确性。

摘要

提出了无监督高速公路异常检测框架:基于结构注意的循环VAE (SABeR-VAE)
该框架显式地利用环境的结构来辅助异常识别


  • 使用车辆自注意力模块来学习道路上的车辆之间的关系
  • 使用单独的车道车辆注意力模块来模拟允许车道的重要性以帮助轨迹预测
  • 以注意力模块的输出为条件,具有随机 Koopman 算子传播潜在空间的循环编码器-解码器架构预测车辆的下一个状态

  • 关键词:异常检测; 自动驾驶; 无监督学习; 人类行为建模

引言

  • 异常检测(AD)对自动驾驶的安全性很有必要
  • 现有方法的局限性:现有方法没有考虑环境上下文,忽略了道路结构对车辆行为的影响。
  • 深度神经网络的可解释性挑战:除了检测精度之外,异常检测算法的决策还需要对利益相关者(如政策制定者和最终用户)具备可解释性。
    在这里插入图片描述
  • 图1解释:地图离散化和交互边。我们将车辆 AD 问题建模为与车辆和车道节点的交互图。道路的连续地图被离散成块。车道节点之间的定向车道边编码车辆的允许路线。红色车辆对前方车道节点及其左侧有有向边,因为驾驶员可以合法地继续前进或向左合并。相反,绿色车辆没有连接到左车道节点的边,因为它不能跨越道路分隔器。车辆边缘,如紫色所示,对于彼此足够接近的车辆存在。

相关工作(背景)

背景

  • 高清地图(HD-maps)为自动驾驶提供了精确的环境信息,推动了车辆轨迹预测技术的进步。
  • 现有轨迹预测方法未能充分利用高清地图的丰富信息,忽视了环境要素的重要性。
  • 如 Deo 和 Liang 等人提出的模型利用高清地图信息,提升了在轨迹预测方面的性能。
  • 通过车道信息和环境要素的结合,可以有效识别驾驶异常等情况。

序列的变分自动编码器

  • 通过车道条件 Koopman 算子来模拟非线性数据动态,用以增强自动驾驶系统的交互预测和异常检测能力。
  • 使用车道条件 Koopman 算子来模拟潜在空间中的时间关系,克服了简单 RNN 中时间传播的障碍。

异常检测

异常检测在自动驾驶等领域的应用:

  • 基于 LSTM-VAE 的机器人故障检测
  • MAAD 数据集利用 STGAE 进行交通异常检测
  • 现有研究在考虑多智能体交互、道路约束及驾驶行为多样性方面的不足,提倡通过建模车辆 - 车辆和车道 - 车辆交互以及利用可解释的变分架构来提高异常检测的性能。

方法(模型)

问题的数学表述

  • 假设车辆在任何时刻都在路段上,车辆数:
    在这里插入图片描述

  • t 时刻,第 i 辆汽车,2D坐标为:
    在这里插入图片描述
    在这里插入图片描述

  • 定义一个元组,包含车辆在时间 t 时刻的左右前三个位置的车道信息:
    在这里插入图片描述

  • 任何时候每辆车的观测信息都是坐标的相对位移:
    在这里插入图片描述

  • 任何车辆的长度为𝑇的轨迹表示为:
    在这里插入图片描述

  • 两辆车的相对坐标:
    在这里插入图片描述

  • 对于第i辆车,可以观察到的车辆数量为:
    在这里插入图片描述

  • 给定场景中所有车辆的轨迹,目标是为每个时间 t 提供异常分数:
    在这里插入图片描述

模型的结构

在这里插入图片描述
图2:SABeR-VAE架构:SABeR-VAE架构试图根据当前车辆位置和结构车道信息预测车辆的一步式未来状态。车辆交互由自我注意力模块建模,而允许的路线由车道车辆注意力模块编码。GRU编码器通过时间处理自注意嵌入,以产生潜在分布,学习捕获了人类行为的随机性特征。然后,以车道嵌入为条件的Koopman算子将潜在分布向前传播,最终解码以预测下一个状态。 f d e c f_{dec} fdec网络共享重建和预测的参数。


  • 车辆自注意力网络,同时用多层感知机 f 来嵌入每辆车的位移:
    在这里插入图片描述
  • 使用两个mlp得到键 K t V V K_t^{VV} KtVV 和值 V t V V V_t^{VV} VtVV
    在这里插入图片描述
  • 该自注意层对时间𝑡的每个车辆位置的最终编码计算为:
    在这里插入图片描述

  • 车道-车辆注意网络,与“车辆-车辆”的自注意力机制类似:
    在这里插入图片描述
  • 车道条件车辆嵌入计算为:
    在这里插入图片描述

  • 接下来,我们来到了Recurrent编码器网络,包含一个门控单元GRU模块和两个全连接层,输入为:
    在这里插入图片描述
  • 门控GRU的计算:
    在这里插入图片描述
  • 然后经过均值和方差神经网络,得到这一部分网络的输出:
    在这里插入图片描述

  • 基于随机Koopman算子的潜在传播网络。车道-车辆信息作为嵌入的输入,预测车辆未来的状态
  • 根据潜在的非线性离散时间系统的演化,使用函数 g 将状态变量映射到一个空间中,这个空间中,动力学特征随着算子线性演化。下面给出Koopman算子:
    在这里插入图片描述
  • 同样的,函数 g 的逆,可以将算子的客观测值转化为原始动力学空间中:
    在这里插入图片描述
  • 在我们的例子中,数据随着网络进一步传播:
    在这里插入图片描述

  • 最后是解码器网络,根据采样的潜在点预测车辆坐标变化:
    在这里插入图片描述

训练和评估

模型训练

  • 端到端训练(中间的所有处理步骤由模型自动完成,不需要人为干预或手动设计特定的特征提取步骤。)
  • 类似滑动窗口训练方法。具体来说,长度为𝑇的整个轨迹被划分为恒定长度⻓的小重叠段或窗口。
  • 使用了变分自编码器中的KL散度来正则化潜在空间的分布,通过最小化KL散度,模型能够生成接近标准正态分布的潜在空间。
    在这里插入图片描述

模型评估

在这里插入图片描述
图 3 展示了车辆轨迹和 SABeR-VAE 异常评分的示例,分为两部分进行解释:

  • 上半部分(车辆场景示例):
    • ( a ) 正常超车:车辆在正常交通流中进行超车,属于正常行为。
    • ( b ) 异常的偏离道路行驶:车辆离开了规定车道,属于异常行为。
    • ( c ) 逆行驾驶:车辆在错误的车道上逆行,显然是危险的异常行为。
  • 下半部分(异常分数曲线):
    • 对应上方场景的每一个示例,展示了由 SABeR-VAE 预测的异常分数曲线。
    • 绿色:正常行为的时间点。
    • 黄色:被忽略的时间点。
    • 红色:检测到的异常行为时间点。

潜在空间解释

  • SABeR-VAE是一个具有连续潜在空间的变分模型,使得具有相似学习特征的观测值在潜在空间中聚集得更近。
    在这里插入图片描述

  • Koopman传播了潜在空间和相应的轨迹。

  • 原始潜在空间的热图以橙色绘制在背景中。蓝色和粉色的圆圈是蓝色和粉色汽车在时间中的潜在轨迹。最大的圆圈对窗口的初始时间步长进行编码,并且随着窗口的进行,它们的大小会减小。

附录

本文所有参考链接如下,如有侵权联系删除:
《Structural Attention-Based Recurrent Variational Autoencoder for Highway Vehicle Anomaly Detection》
论文链接

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值