在算法的江湖里,排序算法就像是一群身怀绝技的高手,它们各有所长,在不同的场景下大显身手。作为 C++ 算法小白的我,今天就带大家一起去认识这八位排序高手,看看它们是如何在数据的世界里排兵布阵的。
1. 冒泡排序(Bubble Sort):慢悠悠的老者
冒泡排序就像是一位慢悠悠的老者,一步一步地把数据中较大的元素 “浮” 到数组的末尾。它的基本思想是多次遍历数组,比较相邻的元素,如果顺序错误就把它们交换过来。
代码示例
cpp
#include <iostream>
#include <vector>
void bubbleSort(std::vector<int>& arr) {
int n = arr.size();
for (int i = 0; i < n - 1; ++i) {
for (int j = 0; j < n - i - 1; ++j) {
if (arr[j] > arr[j + 1]) {
// 交换 arr[j] 和 arr[j+1]
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
详细解释
- 外层循环控制排序的轮数,每一轮都会把一个最大的元素放到数组的末尾。
- 内层循环比较相邻的元素,如果前面的元素比后面的大,就交换它们的位置。
例题讲解
假设有数组 [5, 3, 8, 4, 2]
,第一轮排序后,最大的元素 8
会被放到数组的末尾,数组变为 [3, 5, 4, 2, 8]
。经过多轮排序,最终数组会变成 [2, 3, 4, 5, 8]
。
2. 选择排序(Selection Sort):挑剔的挑选者
选择排序就像一个挑剔的挑选者,每次都从剩余的元素中选出最小的元素,然后放到已排序部分的末尾。
代码示例
cpp
#include <iostream>
#include <vector>
void selectionSort(std::vector<int>& arr) {
int n = arr.size();
for (int i = 0; i < n - 1; ++i) {
int minIndex = i;
for (int j = i + 1; j < n; ++j) {
if (arr[j] < arr[minIndex]) {
minIndex = j;
}
}
// 交换 arr[i] 和 arr[minIndex]
int temp = arr[i];
arr[i] = arr[minIndex];
arr[minIndex] = temp;
}
}
详细解释
- 外层循环控制已排序部分的末尾位置。
- 内层循环从剩余的元素中找到最小的元素,并记录其索引。
- 最后交换最小元素和已排序部分的下一个位置的元素。
例题讲解
对于数组 [5, 3, 8, 4, 2]
,第一轮会找到最小的元素 2
,并和第一个元素 5
交换位置,数组变为 [2, 3, 8, 4, 5]
。经过多轮排序,最终数组会排好序。
3. 插入排序(Insertion Sort):有序的插入者
插入排序就像一个有序的插入者,它将未排序的数据插入到已排序序列的合适位置。
代码示例
cpp
#include <iostream>
#include <vector>
void insertionSort(std::vector<int>& arr) {
int n = arr.size();
for (int i = 1; i < n; ++i) {
int key = arr[i];
int j = i - 1;
while (j >= 0 && arr[j] > key) {
arr[j + 1] = arr[j];
--j;
}
arr[j + 1] = key;
}
}
详细解释
- 外层循环从第二个元素开始,将其视为未排序的元素。
- 内层循环将未排序的元素插入到已排序序列的合适位置。
例题讲解
对于数组 [5, 3, 8, 4, 2]
,当处理元素 3
时,会将其插入到 5
的前面,数组变为 [3, 5, 8, 4, 2]
。随着循环的进行,数组会逐渐排好序。
4. 希尔排序(Shell Sort):分组的革新者
希尔排序是插入排序的改进版,它通过将数组分成多个子数组进行插入排序,从而减少元素的移动次数。
代码示例
cpp
#include <iostream>
#include <vector>
void shellSort(std::vector<int>& arr) {
int n = arr.size();
for (int gap = n / 2; gap > 0; gap /= 2) {
for (int i = gap; i < n; ++i) {
int temp = arr[i];
int j;
for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {
arr[j] = arr[j - gap];
}
arr[j] = temp;
}
}
}
详细解释
- 首先确定一个间隔
gap
,将数组分成多个子数组,对每个子数组进行插入排序。 - 然后逐渐减小间隔
gap
,直到gap
为1
,此时进行最后一次插入排序,数组就排好序了。
例题讲解
对于数组 [5, 3, 8, 4, 2]
,假设初始间隔 gap = 2
,会将数组分成 [5, 8, 2]
和 [3, 4]
两个子数组分别进行插入排序。随着 gap
的减小,最终数组会排好序。
5. 归并排序(Merge Sort):分治的大师
归并排序是一位分治的大师,它将数组分成两个子数组,分别对这两个子数组进行排序,然后将排好序的子数组合并成一个有序的数组。
代码示例
cpp
#include <iostream>
#include <vector>
void merge(std::vector<int>& arr, int left, int mid, int right) {
int n1 = mid - left + 1;
int n2 = right - mid;
std::vector<int> L(n1), R(n2);
for (int i = 0; i < n1; ++i) {
L[i] = arr[left + i];
}
for (int j = 0; j < n2; ++j) {
R[j] = arr[mid + 1 + j];
}
int i = 0, j = 0, k = left;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
++i;
} else {
arr[k] = R[j];
++j;
}
++k;
}
while (i < n1) {
arr[k] = L[i];
++i;
++k;
}
while (j < n2) {
arr[k] = R[j];
++j;
++k;
}
}
void mergeSort(std::vector<int>& arr, int left, int right) {
if (left < right) {
int mid = left + (right - left) / 2;
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
merge(arr, left, mid, right);
}
}
详细解释
mergeSort
函数将数组递归地分成两个子数组,直到每个子数组只有一个元素。merge
函数将两个排好序的子数组合并成一个有序的数组。
例题讲解
对于数组 [5, 3, 8, 4, 2]
,首先会将其分成 [5, 3]
和 [8, 4, 2]
,然后继续细分,直到每个子数组只有一个元素。最后通过 merge
函数将这些子数组合并成一个有序的数组。
6. 快速排序(Quick Sort):神速的剑客
快速排序就像一位神速的剑客,它选择一个基准元素,将数组分成两部分,使得左边的元素都小于等于基准元素,右边的元素都大于基准元素,然后递归地对左右两部分进行排序。
代码示例
cpp
#include <iostream>
#include <vector>
int partition(std::vector<int>& arr, int low, int high) {
int pivot = arr[high];
int i = low - 1;
for (int j = low; j < high; ++j) {
if (arr[j] <= pivot) {
++i;
// 交换 arr[i] 和 arr[j]
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
// 交换 arr[i+1] 和 arr[high]
int temp = arr[i + 1];
arr[i + 1] = arr[high];
arr[high] = temp;
return i + 1;
}
void quickSort(std::vector<int>& arr, int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}
详细解释
partition
函数选择一个基准元素,将数组分成两部分,并返回基准元素的最终位置。quickSort
函数递归地对左右两部分进行排序。
例题讲解
对于数组 [5, 3, 8, 4, 2]
,假设选择最后一个元素 2
作为基准元素,经过 partition
函数处理后,数组会变成 [2, 3, 4, 5, 8]
,然后递归地对左右两部分进行排序。
7. 堆排序(Heap Sort):堆结构的舞者
堆排序利用堆这种数据结构进行排序,它首先将数组构建成一个最大堆,然后不断地将堆顶元素(最大值)与堆的最后一个元素交换,并调整堆,直到堆为空。
代码示例
cpp
#include <iostream>
#include <vector>
void heapify(std::vector<int>& arr, int n, int i) {
int largest = i;
int left = 2 * i + 1;
int right = 2 * i + 2;
if (left < n && arr[left] > arr[largest]) {
largest = left;
}
if (right < n && arr[right] > arr[largest]) {
largest = right;
}
if (largest != i) {
// 交换 arr[i] 和 arr[largest]
int temp = arr[i];
arr[i] = arr[largest];
arr[largest] = temp;
heapify(arr, n, largest);
}
}
void heapSort(std::vector<int>& arr) {
int n = arr.size();
for (int i = n / 2 - 1; i >= 0; --i) {
heapify(arr, n, i);
}
for (int i = n - 1; i > 0; --i) {
// 交换 arr[0] 和 arr[i]
int temp = arr[0];
arr[0] = arr[i];
arr[i] = temp;
heapify(arr, i, 0);
}
}
详细解释
heapify
函数用于调整堆,使得以i
为根的子树满足最大堆的性质。heapSort
函数首先将数组构建成一个最大堆,然后不断地将堆顶元素与堆的最后一个元素交换,并调整堆。
例题讲解
对于数组 [5, 3, 8, 4, 2]
,首先将其构建成一个最大堆,然后将堆顶元素 8
与最后一个元素 2
交换,再调整堆。重复这个过程,直到数组排好序。
8. 计数排序(Counting Sort):统计的智者
计数排序是一种非比较排序算法,它通过统计每个元素出现的次数,然后根据统计结果将元素放回原数组,从而实现排序。
代码示例
cpp
#include <iostream>
#include <vector>
void countingSort(std::vector<int>& arr) {
int maxVal = 0;
for (int num : arr) {
if (num > maxVal) {
maxVal = num;
}
}
std::vector<int> count(maxVal + 1, 0);
for (int num : arr) {
++count[num];
}
int index = 0;
for (int i = 0; i <= maxVal; ++i) {
while (count[i] > 0) {
arr[index] = i;
++index;
--count[i];
}
}
}
详细解释
- 首先找出数组中的最大值
maxVal
。 - 然后创建一个计数数组
count
,统计每个元素出现的次数。 - 最后根据计数数组将元素放回原数组。
例题讲解
对于数组 [5, 3, 8, 4, 2]
,计数数组会统计每个元素出现的次数,然后根据统计结果将元素按顺序放回原数组,实现排序。
总结
这八位排序高手各有优缺点,在不同的场景下有不同的表现。冒泡排序、选择排序和插入排序比较简单,但时间复杂度较高,适用于小规模数据的排序。希尔排序、归并排序、快速排序和堆排序的时间复杂度较低,适用于大规模数据的排序。计数排序是一种非比较排序算法,适用于数据范围较小的情况。作为算法小白,我们要根据具体的问题选择合适的排序算法,才能在算法的江湖里游刃有余。
希望大家通过这篇文章对这八种排序算法有了更深入的了解,让我们一起在算法的世界里继续探索吧!