排序算法大冒险:八大高手的较量

在算法的江湖里,排序算法就像是一群身怀绝技的高手,它们各有所长,在不同的场景下大显身手。作为 C++ 算法小白的我,今天就带大家一起去认识这八位排序高手,看看它们是如何在数据的世界里排兵布阵的。

1. 冒泡排序(Bubble Sort):慢悠悠的老者

冒泡排序就像是一位慢悠悠的老者,一步一步地把数据中较大的元素 “浮” 到数组的末尾。它的基本思想是多次遍历数组,比较相邻的元素,如果顺序错误就把它们交换过来。

代码示例

cpp

#include <iostream>
#include <vector>

void bubbleSort(std::vector<int>& arr) {
    int n = arr.size();
    for (int i = 0; i < n - 1; ++i) {
        for (int j = 0; j < n - i - 1; ++j) {
            if (arr[j] > arr[j + 1]) {
                // 交换 arr[j] 和 arr[j+1]
                int temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
        }
    }
}

详细解释

  • 外层循环控制排序的轮数,每一轮都会把一个最大的元素放到数组的末尾。
  • 内层循环比较相邻的元素,如果前面的元素比后面的大,就交换它们的位置。

例题讲解

假设有数组 [5, 3, 8, 4, 2],第一轮排序后,最大的元素 8 会被放到数组的末尾,数组变为 [3, 5, 4, 2, 8]。经过多轮排序,最终数组会变成 [2, 3, 4, 5, 8]

2. 选择排序(Selection Sort):挑剔的挑选者

选择排序就像一个挑剔的挑选者,每次都从剩余的元素中选出最小的元素,然后放到已排序部分的末尾。

代码示例

cpp

#include <iostream>
#include <vector>

void selectionSort(std::vector<int>& arr) {
    int n = arr.size();
    for (int i = 0; i < n - 1; ++i) {
        int minIndex = i;
        for (int j = i + 1; j < n; ++j) {
            if (arr[j] < arr[minIndex]) {
                minIndex = j;
            }
        }
        // 交换 arr[i] 和 arr[minIndex]
        int temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
    }
}

详细解释

  • 外层循环控制已排序部分的末尾位置。
  • 内层循环从剩余的元素中找到最小的元素,并记录其索引。
  • 最后交换最小元素和已排序部分的下一个位置的元素。

例题讲解

对于数组 [5, 3, 8, 4, 2],第一轮会找到最小的元素 2,并和第一个元素 5 交换位置,数组变为 [2, 3, 8, 4, 5]。经过多轮排序,最终数组会排好序。

3. 插入排序(Insertion Sort):有序的插入者

插入排序就像一个有序的插入者,它将未排序的数据插入到已排序序列的合适位置。

代码示例

cpp

#include <iostream>
#include <vector>

void insertionSort(std::vector<int>& arr) {
    int n = arr.size();
    for (int i = 1; i < n; ++i) {
        int key = arr[i];
        int j = i - 1;
        while (j >= 0 && arr[j] > key) {
            arr[j + 1] = arr[j];
            --j;
        }
        arr[j + 1] = key;
    }
}

详细解释

  • 外层循环从第二个元素开始,将其视为未排序的元素。
  • 内层循环将未排序的元素插入到已排序序列的合适位置。

例题讲解

对于数组 [5, 3, 8, 4, 2],当处理元素 3 时,会将其插入到 5 的前面,数组变为 [3, 5, 8, 4, 2]。随着循环的进行,数组会逐渐排好序。

4. 希尔排序(Shell Sort):分组的革新者

希尔排序是插入排序的改进版,它通过将数组分成多个子数组进行插入排序,从而减少元素的移动次数。

代码示例

cpp

#include <iostream>
#include <vector>

void shellSort(std::vector<int>& arr) {
    int n = arr.size();
    for (int gap = n / 2; gap > 0; gap /= 2) {
        for (int i = gap; i < n; ++i) {
            int temp = arr[i];
            int j;
            for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {
                arr[j] = arr[j - gap];
            }
            arr[j] = temp;
        }
    }
}

详细解释

  • 首先确定一个间隔 gap,将数组分成多个子数组,对每个子数组进行插入排序。
  • 然后逐渐减小间隔 gap,直到 gap 为 1,此时进行最后一次插入排序,数组就排好序了。

例题讲解

对于数组 [5, 3, 8, 4, 2],假设初始间隔 gap = 2,会将数组分成 [5, 8, 2] 和 [3, 4] 两个子数组分别进行插入排序。随着 gap 的减小,最终数组会排好序。

5. 归并排序(Merge Sort):分治的大师

归并排序是一位分治的大师,它将数组分成两个子数组,分别对这两个子数组进行排序,然后将排好序的子数组合并成一个有序的数组。

代码示例

cpp

#include <iostream>
#include <vector>

void merge(std::vector<int>& arr, int left, int mid, int right) {
    int n1 = mid - left + 1;
    int n2 = right - mid;

    std::vector<int> L(n1), R(n2);

    for (int i = 0; i < n1; ++i) {
        L[i] = arr[left + i];
    }
    for (int j = 0; j < n2; ++j) {
        R[j] = arr[mid + 1 + j];
    }

    int i = 0, j = 0, k = left;
    while (i < n1 && j < n2) {
        if (L[i] <= R[j]) {
            arr[k] = L[i];
            ++i;
        } else {
            arr[k] = R[j];
            ++j;
        }
        ++k;
    }

    while (i < n1) {
        arr[k] = L[i];
        ++i;
        ++k;
    }

    while (j < n2) {
        arr[k] = R[j];
        ++j;
        ++k;
    }
}

void mergeSort(std::vector<int>& arr, int left, int right) {
    if (left < right) {
        int mid = left + (right - left) / 2;
        mergeSort(arr, left, mid);
        mergeSort(arr, mid + 1, right);
        merge(arr, left, mid, right);
    }
}

详细解释

  • mergeSort 函数将数组递归地分成两个子数组,直到每个子数组只有一个元素。
  • merge 函数将两个排好序的子数组合并成一个有序的数组。

例题讲解

对于数组 [5, 3, 8, 4, 2],首先会将其分成 [5, 3] 和 [8, 4, 2],然后继续细分,直到每个子数组只有一个元素。最后通过 merge 函数将这些子数组合并成一个有序的数组。

6. 快速排序(Quick Sort):神速的剑客

快速排序就像一位神速的剑客,它选择一个基准元素,将数组分成两部分,使得左边的元素都小于等于基准元素,右边的元素都大于基准元素,然后递归地对左右两部分进行排序。

代码示例

cpp

#include <iostream>
#include <vector>

int partition(std::vector<int>& arr, int low, int high) {
    int pivot = arr[high];
    int i = low - 1;
    for (int j = low; j < high; ++j) {
        if (arr[j] <= pivot) {
            ++i;
            // 交换 arr[i] 和 arr[j]
            int temp = arr[i];
            arr[i] = arr[j];
            arr[j] = temp;
        }
    }
    // 交换 arr[i+1] 和 arr[high]
    int temp = arr[i + 1];
    arr[i + 1] = arr[high];
    arr[high] = temp;
    return i + 1;
}

void quickSort(std::vector<int>& arr, int low, int high) {
    if (low < high) {
        int pi = partition(arr, low, high);
        quickSort(arr, low, pi - 1);
        quickSort(arr, pi + 1, high);
    }
}

详细解释

  • partition 函数选择一个基准元素,将数组分成两部分,并返回基准元素的最终位置。
  • quickSort 函数递归地对左右两部分进行排序。

例题讲解

对于数组 [5, 3, 8, 4, 2],假设选择最后一个元素 2 作为基准元素,经过 partition 函数处理后,数组会变成 [2, 3, 4, 5, 8],然后递归地对左右两部分进行排序。

7. 堆排序(Heap Sort):堆结构的舞者

堆排序利用堆这种数据结构进行排序,它首先将数组构建成一个最大堆,然后不断地将堆顶元素(最大值)与堆的最后一个元素交换,并调整堆,直到堆为空。

代码示例

cpp

#include <iostream>
#include <vector>

void heapify(std::vector<int>& arr, int n, int i) {
    int largest = i;
    int left = 2 * i + 1;
    int right = 2 * i + 2;

    if (left < n && arr[left] > arr[largest]) {
        largest = left;
    }

    if (right < n && arr[right] > arr[largest]) {
        largest = right;
    }

    if (largest != i) {
        // 交换 arr[i] 和 arr[largest]
        int temp = arr[i];
        arr[i] = arr[largest];
        arr[largest] = temp;
        heapify(arr, n, largest);
    }
}

void heapSort(std::vector<int>& arr) {
    int n = arr.size();
    for (int i = n / 2 - 1; i >= 0; --i) {
        heapify(arr, n, i);
    }
    for (int i = n - 1; i > 0; --i) {
        // 交换 arr[0] 和 arr[i]
        int temp = arr[0];
        arr[0] = arr[i];
        arr[i] = temp;
        heapify(arr, i, 0);
    }
}

详细解释

  • heapify 函数用于调整堆,使得以 i 为根的子树满足最大堆的性质。
  • heapSort 函数首先将数组构建成一个最大堆,然后不断地将堆顶元素与堆的最后一个元素交换,并调整堆。

例题讲解

对于数组 [5, 3, 8, 4, 2],首先将其构建成一个最大堆,然后将堆顶元素 8 与最后一个元素 2 交换,再调整堆。重复这个过程,直到数组排好序。

8. 计数排序(Counting Sort):统计的智者

计数排序是一种非比较排序算法,它通过统计每个元素出现的次数,然后根据统计结果将元素放回原数组,从而实现排序。

代码示例

cpp

#include <iostream>
#include <vector>

void countingSort(std::vector<int>& arr) {
    int maxVal = 0;
    for (int num : arr) {
        if (num > maxVal) {
            maxVal = num;
        }
    }
    std::vector<int> count(maxVal + 1, 0);
    for (int num : arr) {
        ++count[num];
    }
    int index = 0;
    for (int i = 0; i <= maxVal; ++i) {
        while (count[i] > 0) {
            arr[index] = i;
            ++index;
            --count[i];
        }
    }
}

详细解释

  • 首先找出数组中的最大值 maxVal
  • 然后创建一个计数数组 count,统计每个元素出现的次数。
  • 最后根据计数数组将元素放回原数组。

例题讲解

对于数组 [5, 3, 8, 4, 2],计数数组会统计每个元素出现的次数,然后根据统计结果将元素按顺序放回原数组,实现排序。

总结

这八位排序高手各有优缺点,在不同的场景下有不同的表现。冒泡排序、选择排序和插入排序比较简单,但时间复杂度较高,适用于小规模数据的排序。希尔排序、归并排序、快速排序和堆排序的时间复杂度较低,适用于大规模数据的排序。计数排序是一种非比较排序算法,适用于数据范围较小的情况。作为算法小白,我们要根据具体的问题选择合适的排序算法,才能在算法的江湖里游刃有余。

希望大家通过这篇文章对这八种排序算法有了更深入的了解,让我们一起在算法的世界里继续探索吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值