枚举算法(2)

本文介绍了如何使用枚举算法解决蓝桥杯比赛中的数学问题,包括多个变量的枚举和条件判断。通过举例详细阐述了枚举算法的应用,如寒假作业题目的解法,以及掷骰子和回文数字问题的解决方案。
摘要由CSDN通过智能技术生成

枚举算法(1)枚举算法(1)_青春好少年!的博客-CSDN博客

枚举算法(1)中只枚举一个变量的解 ,但是枚举题需要枚举很多变量,并且条件判断也会很繁琐,因此我在这里写了一篇枚举算法(2)。

接下来我们看一道

蓝桥杯真题 寒假作业

题目:
现在小学的数学题目也不是那么好玩的。
看看这个寒假作业:
□ + □ = □
□ - □ = □
□ × □ = □
□ ÷ □ = □
每个方块代表1~13中的某一个数字,但不能重复。
比如:
6 + 7 = 13
9 - 8 = 1
3 * 4 = 12
10 / 2 = 5
以及:
7 + 6 = 13
9 - 8 = 1
3 * 4 = 12
10 / 2 = 5
就算两种解法。(加法,乘法交换律后算不同的方案)
你一共找到了多少种方案?
请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。

题解:

枚举范围循环

这道题目里变量取值范围是 [1,13],判断条件是使得题目中的式子全部成立,可以用枚举算法。

我们需要枚举等号左面的 8 个空格,等号右边可以根据左边枚举结果进行计算。

在程序中,可以通过多重for循环实现枚举。

条件判断

在内层for加上判断条件来检验枚举的这组解的合法性。但是可能,当没进入内层for时,枚举的解已经是不合法的。

vis数组来标记是否用过某个数字,如果使用过记录为 1,否则为 0。

这就是枚举的思路,接下来看几道例题。

例题1:

[USACO Feb07]掷骰子 - 题库 - 计蒜客

[USACO Feb07]掷骰子

贝西喜欢玩桌上扮演游戏(BRPG),所以她说服农场主约翰开车送她到商店,在那里她买了三个骰子。

这三个骰子分别有 S1​,S2​,S3​ 个面。每个有 S 面的骰子每一面的点数分别是 1,2,3,…,S−1,S。

贝西每次同时扔出三个骰子,她一直扔呀扔,试图找出三个骰子点数之和哪个出现的次数最多。

现在给定三个骰子中每个骰子的面数,求三个骰子的点数和哪个最频繁出现。如果有多解,输出最小的一个。

数据范围:(2≤S1​≤20;2≤S2​≤20;2≤S3​≤40)

题解:

枚举三个骰子,用数组记录每个总和出现次数。

代码如下:

#include<cstdio>
int s1,s2,s3;
int a[16001],maxx=-1,maxs;
int main()
{
    scanf("%d%d%d",&s1,&s2,&s3);
    for(int i=1;i<=s1;i++)
      for(int j=1;j<=s2;j++)
        for(int q=1;q<=s3;q++)
          a[i+j+q]++;
    for(int i=s1*s2*s3-1;i>=3;i--)
    {
        if(a[i]>=maxx)
        {
            maxx=a[i];
            maxs=i;
        }
    }
    printf("%d",maxs);
    return 0;
}

例题2:P1437 - [蓝桥杯]回文数字 - New Online Judge

回文数字

题目描述:
观察数字:12321,123321 都有一个共同的特征,无论从左到右读还是从右向左读,都是相同的。这样的数字叫做:回文数字。
本题要求你找到一些5位或6位的十进制数字。满足如下要求:
该数字的各个数位之和等于输入的整数。

输入:
一个正整数 n (10<n<100), 表示要求满足的数位和。

输出:
若干行,每行包含一个满足要求的5位或6位整数。数字按从小到大的顺序排列。
如果没有满足条件的,输出:-1

题解:

先枚举五位回文数,要三重循环枚举三个位置,万位和个位从 1 枚举到 9,千位,十位和百位从 0 枚举到 9,判断数字之和是否为 n,六位回文数也是这样的。

代码如下:

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int n,flag=0;
	cin>>n;
	for(int i=1;i<=9;i++){
		for(int j=0;j<=9;j++){
			for(int k=0;k<=9;k++){
				if(i+j+k+j+i==n){
					flag=1;
					cout<<i*10001+j*1010+k*100<<endl;
				}
			}
		}
	}
	for(int i=1;i<=9;i++){
		for(int j=0;j<=9;j++){
			for(int k=0;k<=9;k++){
				if(i+j+k+k+j+i==n){
					flag=1;
					cout<<i*100001+j*10010+k*1100<<endl;
				}
			}
		}
	}
	if(!flag)cout<<-1<<endl;
	return 0;
}

 练习:

[USACO1.5]回文质数 Prime Palindromes - 洛谷

[NOIP2008 提高组] 火柴棒等式 - 洛谷

[NOIP2002 普及组] 选数 - 洛谷

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值