枚举算法(1)枚举算法(1)_青春好少年!的博客-CSDN博客
枚举算法(1)中只枚举一个变量的解 ,但是枚举题需要枚举很多变量,并且条件判断也会很繁琐,因此我在这里写了一篇枚举算法(2)。
接下来我们看一道
蓝桥杯真题 寒假作业
题目:
现在小学的数学题目也不是那么好玩的。
看看这个寒假作业:
□ + □ = □
□ - □ = □
□ × □ = □
□ ÷ □ = □
每个方块代表1~13中的某一个数字,但不能重复。
比如:
6 + 7 = 13
9 - 8 = 1
3 * 4 = 12
10 / 2 = 5
以及:
7 + 6 = 13
9 - 8 = 1
3 * 4 = 12
10 / 2 = 5
就算两种解法。(加法,乘法交换律后算不同的方案)
你一共找到了多少种方案?
请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
题解:
枚举范围循环
这道题目里变量取值范围是 [1,13],判断条件是使得题目中的式子全部成立,可以用枚举算法。
我们需要枚举等号左面的 8 个空格,等号右边可以根据左边枚举结果进行计算。
在程序中,可以通过多重for
循环实现枚举。
条件判断
在内层for
加上判断条件来检验枚举的这组解的合法性。但是可能,当没进入内层for
时,枚举的解已经是不合法的。
用vis
数组来标记是否用过某个数字,如果使用过记录为 1,否则为 0。
这就是枚举的思路,接下来看几道例题。
例题1:
[USACO Feb07]掷骰子
贝西喜欢玩桌上扮演游戏(BRPG),所以她说服农场主约翰开车送她到商店,在那里她买了三个骰子。
这三个骰子分别有 S1,S2,S3 个面。每个有 S 面的骰子每一面的点数分别是 1,2,3,…,S−1,S。
贝西每次同时扔出三个骰子,她一直扔呀扔,试图找出三个骰子点数之和哪个出现的次数最多。
现在给定三个骰子中每个骰子的面数,求三个骰子的点数和哪个最频繁出现。如果有多解,输出最小的一个。
数据范围:(2≤S1≤20;2≤S2≤20;2≤S3≤40)
题解:
枚举三个骰子,用数组记录每个总和出现次数。
代码如下:
#include<cstdio>
int s1,s2,s3;
int a[16001],maxx=-1,maxs;
int main()
{
scanf("%d%d%d",&s1,&s2,&s3);
for(int i=1;i<=s1;i++)
for(int j=1;j<=s2;j++)
for(int q=1;q<=s3;q++)
a[i+j+q]++;
for(int i=s1*s2*s3-1;i>=3;i--)
{
if(a[i]>=maxx)
{
maxx=a[i];
maxs=i;
}
}
printf("%d",maxs);
return 0;
}
例题2:P1437 - [蓝桥杯]回文数字 - New Online Judge
回文数字
题目描述:
观察数字:12321,123321 都有一个共同的特征,无论从左到右读还是从右向左读,都是相同的。这样的数字叫做:回文数字。
本题要求你找到一些5位或6位的十进制数字。满足如下要求:
该数字的各个数位之和等于输入的整数。
输入:
一个正整数 n (10<n<100), 表示要求满足的数位和。
输出:
若干行,每行包含一个满足要求的5位或6位整数。数字按从小到大的顺序排列。
如果没有满足条件的,输出:-1
题解:
先枚举五位回文数,要三重循环枚举三个位置,万位和个位从 1 枚举到 9,千位,十位和百位从 0 枚举到 9,判断数字之和是否为 n,六位回文数也是这样的。
代码如下:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,flag=0;
cin>>n;
for(int i=1;i<=9;i++){
for(int j=0;j<=9;j++){
for(int k=0;k<=9;k++){
if(i+j+k+j+i==n){
flag=1;
cout<<i*10001+j*1010+k*100<<endl;
}
}
}
}
for(int i=1;i<=9;i++){
for(int j=0;j<=9;j++){
for(int k=0;k<=9;k++){
if(i+j+k+k+j+i==n){
flag=1;
cout<<i*100001+j*10010+k*1100<<endl;
}
}
}
}
if(!flag)cout<<-1<<endl;
return 0;
}
练习: