-
难度
中等
-
题目
以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间
-
示例
-
数据要求
- 1 <= intervals.length <= 104
- intervals[i].length == 2
- 0 <= starti <= endi <= 104
-
解析
对于给定的问题,我们一拿到手第一时间肯定是画图分析,观察每个每给区域的关系。
这是根据示例一画出的草图,由图可以看出,需要合并的区域即是有相交部分的区域。我们从左往右遍历各个区域,由a和b表示前一个区域,c和d表示后一个区域。
这时判断两个区域的关系很简单,因为a一定小于等于c。则当b>=c,时两个区域有交叉,设置b=max(b,d)获取合并区域的边界,c和d继续向后移动;b<c时,两个区域无交叉,则可以将a,b表示的区域存入集合,然后a,b和c,d都向后移动。
当c,d表示最后区域时,c,d不能更新了,就无法做下一轮判断,做完此轮判断后,a,b的结果要记得向集合中添加。
当然,以上的算法都是基于给的数组是根据start由小到大排列的,而且长度都大于1。当长度小于等于1时,直接返回原数组即可。想要获得排序由start排序的数组,根据Arrays类的sort方法,构造一个比较器传入参数即可,也可以使用lambda表达式。
class Solution {
public int[][] merge(int[][] intervals) {
ArrayList<int[]> list=new ArrayList<>();
Arrays.sort(intervals, (o1, o2) -> o1[0]-o2[0]);
int a=intervals[0][0];
int b=intervals[0][1];
for(int i=1;i< intervals.length;i++){
int c=intervals[i][0];
int d=intervals[i][1];
if(b<c){
list.add(new int[]{a,b});
a=c;
b=d;
}else{
b=Math.max(b,d);
}
if(i==intervals.length-1){
list.add(new int[]{a,b});
}
}
return list.toArray(new int[][]{});
}
}
-
结果