在pytorch中dataset和dateloader的异同
在PyTorch中,Dataset
和DataLoader
是用于加载和处理数据的两个重要类。
Dataset
是一个抽象类,用于表示数据集,它定义了抽象方法__len__
和__getitem__
,用于返回数据集的大小和指定索引的数据。当我们定义自己的数据集时,需要继承Dataset
类,并实现这两个方法,以便我们可以在训练模型时读取和处理数据。
提供一种方式去获取数据及其label,如何获取每一个数据及其label,告诉我们总共有多少数据。
DataLoader
则是一个用于批量加载数据的工具类。它将一个Dataset
对象作为输入,并提供了批量加载、数据打乱、多进程处理等功能。具体来说,DataLoader
可以在数据加载时进行并行化处理,从而加快数据加载的速度。它还可以对数据进行随机打乱,以增加模型的泛化能力。同时,DataLoader
还可以指定批次大小、是否使用shuffle等参数来调整数据加载的方式。
为后面的网络提供不同的数据形式。
总之,Dataset
用于表示数据集,DataLoader
用于对数据集进行批量加载和处理。它们的主要区别在于Dataset
只表示数据集本身,而DataLoader
则是对数据集的一个高级封装,提供了数据加载、批量处理和并行化处理等功能。
在虚拟环境中安装torch后,检查该环境是否可以使用cuda,可以在虚拟环境终端逐行输入:
activate [envs name]
python
import torch
torch.cuda.is_available()
如果显示的结果是True,那么cuda可用。否则就没有装好torch。
torch下载地址