torch

在pytorch中dataset和dateloader的异同

在PyTorch中,DatasetDataLoader是用于加载和处理数据的两个重要类。

Dataset是一个抽象类,用于表示数据集,它定义了抽象方法__len____getitem__,用于返回数据集的大小和指定索引的数据。当我们定义自己的数据集时,需要继承Dataset类,并实现这两个方法,以便我们可以在训练模型时读取和处理数据。

        提供一种方式去获取数据及其label,如何获取每一个数据及其label,告诉我们总共有多少数据。

DataLoader则是一个用于批量加载数据的工具类。它将一个Dataset对象作为输入,并提供了批量加载、数据打乱、多进程处理等功能。具体来说,DataLoader可以在数据加载时进行并行化处理,从而加快数据加载的速度。它还可以对数据进行随机打乱,以增加模型的泛化能力。同时,DataLoader还可以指定批次大小、是否使用shuffle等参数来调整数据加载的方式。

        为后面的网络提供不同的数据形式。

总之,Dataset用于表示数据集,DataLoader用于对数据集进行批量加载和处理。它们的主要区别在于Dataset只表示数据集本身,而DataLoader则是对数据集的一个高级封装,提供了数据加载、批量处理和并行化处理等功能。 

在虚拟环境中安装torch后,检查该环境是否可以使用cuda,可以在虚拟环境终端逐行输入:

activate [envs name]
python
import torch
torch.cuda.is_available()

如果显示的结果是True,那么cuda可用。否则就没有装好torch。

torch下载地址

Previous PyTorch Versions | PyTorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值