解决限速 | 夸克网盘

一.教程步骤(这里以谷歌浏览器为例)

   

1.给谷歌浏览器装载一个油猴插件(以图为例)

       

拖拽此处下载的tempmonkey.crx 文件至扩展程序tempmonkey.crx - 蓝奏云文件大小:1.5 M|icon-default.png?t=N7T8https://krcute.lanzn.com/iy04v23g8y3c

2.给油猴插件安装网盘脚本

      ①打开下面的网站

网盘直链下载助手icon-default.png?t=N7T8https://greasyfork.org/zh-CN/scripts/436446-%E7%BD%91%E7%9B%98%E7%9B%B4%E9%93%BE%E4%B8%8B%E8%BD%BD%E5%8A%A9%E6%89%8B        ② 选择安装

3. 下载比特彗星

比特彗星.zip - 蓝奏云文件大小:28.4 M|icon-default.png?t=N7T8https://krcute.lanzn.com/ilf6c23g9ife

4.打开  夸克网盘网页版

【夸克网盘】夸克网盘PC网页版端入口夸克网盘是夸克推出的一款云服务产品,功能包括云存储、高清看剧、文件在线解压、PDF一键转换等。通过夸克网盘可随时随地管理和使用照片、文档、手机资料,目前支持Android、iOS、PC、iPad。 夸克网盘是夸克浏览器附带的功能,特点就是和浏览器本身的很多智能小工具打通了。像浏览器的很多文字识别、文件转换、文件扫描存档等功能,都可以兼容到夸克网盘的云空间。 此外,很多手机浏览器都有文件管理、查看的功能,而夸克网盘不仅有着类似的功能,而且额外增加了一个网盘主打的自动备份功能,和浏览器的本地管理结合起来,效果更好。最方便的特点是“流畅播”功能,如果用夸克浏览器来播放在线视频,会发现它可以进行视频转存,把网页视频直接转存到夸克网盘,相当于更换了一个更加稳定的视频源,无论是在线观看还是下载,都会变得更加快捷。icon-default.png?t=N7T8https://pan.quark.cn/list#/list/all

输入代码  AGPL3

打开比特彗星

此时即可完成高速下载     具体下载速度根据您本地网速判断(●'◡'●)

### 使用 Python 实现夸克网盘限速下载 为了实现夸克网盘的文件不限速下载,通常需要借助第三方库来处理HTTP请求并模拟浏览器行为。一个常见的方法是利用 `requests` 库配合多线程技术提高下载速度。 #### 方法一:基于 requests 和 多线程 下载 这种方法通过分割文件成多个部分并发下载,从而绕过某些平台的速度限制: ```python import os import threading import requests def download_part(url, start_byte, end_byte, file_name, part_index): headers = {'Range': f'bytes={start_byte}-{end_byte}'} response = requests.get(url, headers=headers, stream=True) with open(f"{file_name}.part{part_index}", 'wb') as f: for chunk in response.iter_content(chunk_size=8192): if chunk: f.write(chunk) def combine_files(file_name, num_parts): with open(file_name, 'wb') as outfile: for i in range(num_parts): part_file = f'{file_name}.part{i}' with open(part_file, 'rb') as infile: outfile.write(infile.read()) os.remove(part_file) def multi_thread_download(url, output_filename='output'): response_head = requests.head(url) total_length = int(response_head.headers['Content-Length']) threads = [] parts = 4 # 可调整分片数量 bytes_per_part = total_length // parts for i in range(parts): start_byte = i * bytes_per_part end_byte = (i + 1) * bytes_per_part - 1 if i == parts - 1: end_byte = '' # 最后一块不分割 thread = threading.Thread( target=download_part, args=(url, start_byte, end_byte, output_filename, i)) threads.append(thread) thread.start() for t in threads: t.join() combine_files(output_filename, parts) ``` 此脚本会将目标URL指向的文件分为四份同时下载,并最终合并为完整的文件[^2]。 #### 设置 VS Code 的 Python 解释器路径 如果希望在 Visual Studio Code 中运行上述代码,则需按照以下步骤配置环境变量: 点击 File->Preferences->Settings ,创建或编辑 settings.json 文件,在其中指定 Python 安装位置: ```json { "python.pythonPath": "E:\\soft\\after\\python" } ``` 这一步骤确保了开发环境中能够正确识别所使用的 Python 版本[^3]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值