基于TSP(旅行商)问题的混合粒子群算法 附直接运行代码

该博客介绍了混合粒子群算法在解决旅行商问题(TSP)中的应用。算法通过结合遗传算法的交叉和变异操作,避免标准粒子群算法可能陷入局部最优的缺点。文章详细阐述了算法流程,包括个体编码、适应度值计算、交叉和变异操作,并提供了MATLAB代码实现。
摘要由CSDN通过智能技术生成

如果对粒子群一点都不知道的可以看看上文标准粒子群算法,想看代码的直接去下面1.4标题即可

链接:(105条消息) 自己对粒子群算法的理解(附matlab直接运行代码)(二维)_吕浩轩的博客-CSDN博客_二维粒子群算法​​​​​​h

好现在开始正文:

1.1 前言:理论基础

标准粒子群通过追随个体极值和群体极值完成极值寻优,虽然简单,且能快速收敛,但是随着迭代次数的增加,在种群收敛集中的过程中,各个粒子也越来越相似(接近),这样就有可能进入局部最优解而无法跳出

混合粒子群算法:摈弃了传统粒子群算法中的通过追踪极值来更新粒子位置的方法,引入了遗传算法中的交叉和变异操作,通过粒子同个体极值和群体极值的交叉以及粒子自身变异的方式来搜索最优解。

1.2 算法流程

基本上和标准粒子群基本一致。(图有点糊,抱歉)

1.3 算法实现

1.3.1 :个体编码

在写代码前,先要讲一下粒子的个体编码

粒子个体采用整数编码,每个粒子代表经过的城市,比如A粒子=5,A的个体编码为[2 5 1 3 6]

表示城市遍历从2开始,途径 5 1 3 6到2结束,没错,是返回2了。这样才能完成TSP的遍历。

1.3.2 :适应度值

粒子适应度值就是遍历路径的长度,计算公式为如下:

 

n为城市数量,path(i,j)为城市i,j之间的路径长度

​​​​​​​1.3.3: 交叉操作

交叉操作
个体通过个体极值和群体极值交叉来更新,交叉方法采用整数交叉法。首先选择两个交叉位置,然后把个体和个体极值或个体与群体极值进行交叉,假定随机选取的交叉位置为3和4位置,操作方法如下:
个体:[9 4 2 1 3 7 6 10 8 5]

极值:[9 2 1 6 3 7 4 10 8 5]
交叉为新个体:[9 4 1 6 3 7 6 10 8 5]

在MATLAB智能算法30个案例这本书中是用上面的素材交换3和5位置生成[9 4 1 6

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Abandon-Lv

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值