(最小生成树模板)公路村村通

这篇博客介绍了三种图论算法的实现:Kruskal算法通过优先队列求最小生成树,Prim算法利用邻接矩阵进行最小生成树的构建,以及如何使用sort进行结构体排序。文章通过C++代码展示了算法的详细步骤,并提供了输入输出示例。
摘要由CSDN通过智能技术生成

一、krustal的优先队列

#include<bits/stdc++.h>
using namespace std;
#define N 1005
#define INF 0x3f3f3f3f
int pre[N];
int n,m;
struct edge
{
    int u,v,w;
    friend bool operator<(const edge &a,const edge &b)
    {
        return a.w>b.w;
    }
};
int find(int x)
{
    if(x!=pre[x])
        return pre[x]=find(pre[x]);
    return x;
}
void merge(int x,int y)
{
    int a=find(x);
    int b=find(y);
    if(a!=b)
        pre[a]=b;
}
void init()
{
    for(int i=1;i<=n;i++)
        pre[i]=i;
}
int main()
{
    cin>>n>>m;
    init();
    priority_queue<edge>q;
    for(int i=0;i<m;i++)
    {
        int u,v,w;
        cin>>u>>v>>w;
        q.push({u,v,w});
    }
    int sum=0;
    int cnt=0;
    for(int i=0;i<m;i++)
    {
        auto it=q.top();
        q.pop();
        //cout<<find(it.u)<<"  "<<find(it.v)<<endl;
        if(find(it.u)!=find(it.v))
        {
            merge(it.u,it.v);
            sum+=it.w;
            cnt++;
        }
        if(cnt==n-1)
            break;
    }
    //cout<<cnt<<endl;
    if(cnt==n-1)
        cout<<sum<<endl;
    else
        cout<<"-1"<<endl;
    return 0;
}

二、sort排序,使用结构体存储

#include<bits/stdc++.h>
using namespace std;
const int maxx=2010;
struct s{
	int v,w;
	int cost;
}t[maxx];
int father[maxx];
bool cmp(s& a1,s& a2){
	return a1.cost<a2.cost;
}
int findfather(int x){
	while(x!=father[x])
	 x=father[x];
	 return x;
}
int kruskal(int n,int m)//n个顶点,m条边数
{
	int cnt=0,summ=0;
	for(int i=0;i<m;i++){
		int a=findfather(t[i].v);
		int b=findfather(t[i].w);
		if(a!=b){
			father[a]=b;
			cnt++;
			summ+=t[i].cost;
		}
		if(cnt==n-1) break;
	}
	if(cnt==n-1) return summ;
	return -1;
 } 
int main()
{
  for(int i=0;i<maxx;i++)
    father[i]=i;
  int n,m;
  cin>>n>>m;
  for(int i=0;i<m;i++)
    cin>>t[i].v>>t[i].w>>t[i].cost;
  sort(t,t+m,cmp);
  cout<<kruskal(n,m);
  return 0;
}

三、prim算法

#include<iostream>
#include<algorithm>
const int MAXN = 1005;
const int INF = 0x3f3f3f3f;
using namespace std;

int Graph[1005][1005];
int d[1005];
bool Visited[1005] = { false };
int n, m;
int Prim();
int FindMin();
int main()
{
	int a, b, c;
	cin >> n >> m;
	fill(Graph[0], Graph[0] + 1005*1005, INF);	//初始化图
	while (m--)			//建图
	{
		cin >> a >> b >> c;
		Graph[a][b] = Graph[b][a] = c;	//无向图
	}

	int ans = Prim();
	cout << ans;

	return 0;
}
int Prim()
{
	fill(d, d + MAXN, INF);		//将d数组初始化
	d[1] = 0;					//将第一个顶点作为起点,用其他点最终答案都一样,只是生成的图形状不一样,但权值都一样
	int ans = 0;				//记录权值之和

	for (int i = 1; i <= n; i++)	//注意这里的下标,数字下标,且从0开始。
	{
		int u = FindMin();	//找到未访问的d[]中最小的权值
		if (u == -1) return -1; //如果找不到小于INF的d[u], 则说明剩下的点和集合S不连通
		Visited[u] = true;
		ans += d[u];			//找到最小的权值路累加起来。

		for (int v = 1; v <= n; v++)
			if (!Visited[v] && Graph[u][v] != INF && Graph[u][v] < d[v])//如果没有访问过,而且u能到达v,以u作为中介能找到更短的边
				d[v] = Graph[u][v];		//更新d数组
	}

	return ans;
}
int FindMin()
{
	int ret = -1;
	int MIN = INF;
	for (int i = 1; i <= n; i++)
	{
		if (!Visited[i] && d[i] < MIN)
		{
			ret = i;
			MIN = d[i];
		}
	}
	return ret;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值