1.Anaconda下载+配置
从清华镜像源 Index of / (anaconda.com)下载
版本选择2023.07
Anaconda自带python(3.8) 无需自己下载Python
下载完成后两步: ①修改环境路径
②修改下载资源为清华镜像源
Windows下的Anaconda详细安装教程(2023/10/7)_windows安装anaconda-CSDN博客
具体看此篇
2.Cuda和Pytorch的下载
首先在Anaconda prompt中创建 yolov8 虚拟环境并激活
conda create -n yolov8 python=3.8.3
在激活的虚拟环境中:先下载Cuda和Cudnn,这两者相当于为pytorch搭建GPU学习基础,之后再下载Pytorch
一. Cuda和Cudnn
Cuda下载网址:https://developer.nvidia.com/cuda-toolkit-archive
Cudnn下载网址:https://developer.nvidia.com/rdp/cudnn-archive
具体参考:最详细!Windows下的CUDA与cuDNN详细安装教程_cuda安装-CSDN博客
注意点:Cuda和Cudnn在下载过程中不要更改默认下载路径!在CUDNN解压移动到cuda过程中要进行文件替换而不是跳过
二. Pytorch
两种方法下载
①去Pytorch官网找到对应cuda版本的pytorch进行命令行下载,需使用vpn,这种方法基本不会出错,能直接生成torch.cuda依赖。
conda:conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia
②下载对应的wheel软件,当第一种方法不成功时再用。细节为先找到对应wheel软件所在的文件地址,在命令行中切换到对应文件地址,再pip+完整包名
pip:pip install torch-2.0.0+cu118-cp38-cp38-win_amd64.whl
检验:
#输入库 import torch #查看版本 print(torch.__version__) #查看gpu是否可用 print(torch.cuda.is_available()) #返回设备gpu个数 print(torch.cuda.device_count()) # 查看对应CUDA的版本号 print(torch.backends.cudnn.version()) print(torch.version.cuda) #退出python quit()
3.YOLOv8的配置
①首先从github上下载源码,直接用pycharm打开
GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite
并配置好自己的Python编译器,即刚才创建的yolov8虚拟环境(用conda模式)
这里需要把anaconda prompt属性中的路径加到terminal终端中才能运行
pycharm找不到conda可执行文件怎么办?-CSDN博客
②下载运行所需的各种包与依赖
通过pip install ultralytics与pip install yolo以及手动添加来补全依赖
遇到错误可以pip uninstall 包名 再 pip install 包名 回来
最后通过YOLOV8自带的readme文件中的代码进行检验预测看能否成功