yolov8安装与环境配置

1.Anaconda下载+配置

从清华镜像源 Index of / (anaconda.com)下载

版本选择2023.07

Anaconda自带python(3.8)  无需自己下载Python

下载完成后两步: ①修改环境路径

                           ②修改下载资源为清华镜像源 

Windows下的Anaconda详细安装教程(2023/10/7)_windows安装anaconda-CSDN博客

具体看此篇

2.Cuda和Pytorch的下载

首先在Anaconda prompt中创建 yolov8 虚拟环境并激活

 conda create -n yolov8 python=3.8.3

在激活的虚拟环境中:先下载Cuda和Cudnn,这两者相当于为pytorch搭建GPU学习基础,之后再下载Pytorch

一. Cuda和Cudnn

Cuda下载网址:https://developer.nvidia.com/cuda-toolkit-archive

Cudnn下载网址:https://developer.nvidia.com/rdp/cudnn-archive

具体参考:最详细!Windows下的CUDA与cuDNN详细安装教程_cuda安装-CSDN博客

注意点:Cuda和Cudnn在下载过程中不要更改默认下载路径!在CUDNN解压移动到cuda过程中要进行文件替换而不是跳过

二. Pytorch

两种方法下载

①去Pytorch官网找到对应cuda版本的pytorch进行命令行下载,需使用vpn,这种方法基本不会出错,能直接生成torch.cuda依赖。

conda:conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia

②下载对应的wheel软件,当第一种方法不成功时再用。细节为先找到对应wheel软件所在的文件地址,在命令行中切换到对应文件地址,再pip+完整包名

pip:pip install torch-2.0.0+cu118-cp38-cp38-win_amd64.whl

检验:

#输入库
import torch
#查看版本
print(torch.__version__)
#查看gpu是否可用
print(torch.cuda.is_available())
#返回设备gpu个数
print(torch.cuda.device_count())
# 查看对应CUDA的版本号
print(torch.backends.cudnn.version())
print(torch.version.cuda)
#退出python
quit()

3.YOLOv8的配置

①首先从github上下载源码,直接用pycharm打开

GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite

并配置好自己的Python编译器,即刚才创建的yolov8虚拟环境(用conda模式)

这里需要把anaconda prompt属性中的路径加到terminal终端中才能运行

pycharm找不到conda可执行文件怎么办?-CSDN博客

②下载运行所需的各种包与依赖

通过pip install ultralytics与pip install yolo以及手动添加来补全依赖

yolo predict model=yolov8n.pt source=‘ultralytics/assets/bus.jpg‘时出现Error: No such command ‘predict‘_yolo no such command 'predict'.-CSDN博客

遇到错误可以pip uninstall 包名 再 pip install 包名 回来

最后通过YOLOV8自带的readme文件中的代码进行检验预测看能否成功

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值