hive数据倾斜

前言:数据倾斜大多数是由于数据本身的分布不均匀。故而需要我们使用诸如列裁剪、Mapjoin、GroupBy等方法进行处理。
数据倾斜表现:
1、任务日志进度长度为99%,在日志监控进度条显示只有几个reduce进度一直没有完成。

2、某一reduce处理时长>平均处理时长

3、job数过多

数据倾斜原因分析:
1、key分布不均

2、业务数据本身存在不均匀情况

3、关联字段重复数据较多

解决方法:
1、join定位:

第一:主表驱动表应该选择分布均匀的表作为驱动表,并做好列裁剪。

第二:大小表Join,需要记得使用map join,小表会先进入内存,在map端即会完成reduce.

第三:此种情形最为常用!!!大表join大表时,关联字段存在大量空值null key

解决方法为把空值null key变成字符串加上随机数!!!可以0把由于数据倾斜而导致的数据集中到一个reduce上处理的情形,打散到不同的reduce上,9生成多个reduce!!!

on case when haha.id is null then concat('hive',rand()) else
haha.id end = xixi.id
2、不同数据类型关联也会产生数据倾斜滴!

例如注册表中ID字段为int类型,登录表中ID字段即有string类型,也有int类型。当按照ID字段进行两表之间的join操作时,默认的Hash操作会按int类型的ID来进行分配,这样会导致所有string类型ID的记录统统统统统统都都都都分配到一个Reduce里面去!!!

解决方法:把数字类型转换成字符串类型

on haha.ID = cast(xixi.ID as string)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值