普林斯顿微积分读本 第1章 函数、图像和直线

目录

第1章 函数、图像和直线

1.1 函数

1.1.1 区间表示法

1.1.2 求定义域

1.1.3 利用图像求值域

1.1.4 垂线检验

1.2 反函数

1.2.1 水平线检验

1.2.2 求反函数

1.2.3 限制定义域

1.2.4 反函数的反函数

1.3 函数的复合

1.4 奇函数和偶函数

1.5 线性函数的图像

1.6 常见函数及其图像


第1章 函数、图像和直线

1.1 函数

  • 函数是将一个对象转化为另一个对象的规则,起始对象称为输入,来自称为定义域的集合返回对象称为输出,来自称为上域的集合。

        f(x)=x2,定义域为R

                f是变换规则,f(x)是变换规则f应用于变量x后得到的结果;

                f(x)是一个函数×,f是一个函数√

        g(x)=x2,定义域为非负数

                f(-1/2)=1/4,g(-1/2)无定义;

                g和f有相同的规则,但g的定义域小于f的定义域 ->g是由限制f的定义域产生的

        f(马)=?,“马”不在f的定义域中,f(马)无定义

        一个函数必须给每一个有效的输入指定唯一的输出

  • 值域是所有可能的输出所组成的集合。
  • 值域是上域的一个子集。上域是可能输出的集合,值域是实际输出的集合。

        上域是用来定义的,限定范围,可能包含很多实际函数无法得出的值。

1.1.1 区间表示法

  • [a, b]是指从a到b端点间的所有实数,包括a和b。这种形式表示的区间称作闭区间
  • (a, b)指的是介于a和b之间但不包括a和b的所有实数的集合。这种形式表示的区间称作开区间
  • 混合匹配:[a, b),(a, b]称作半开区间
  • (a, ∞), 它是指大于但不包括a的所有数;[a, ∞)也一样,只是它包括a。

1.1.2 求定义域

  • 有时,函数的定义中包括了定义域。然而在大多数情况下,定义域是没有给出的。通常的惯例是,定义域包括实数集尽可能多的部分。
  • 三种常见情况:
    1. 分数的分母不能是0;
    2. 不能取一个负数的平方根;
    3. 不能取一个复数或0的对数

                tan(90°)无定义,实际是第一种情况的特例:tan(90°)=sin(90°)/cos(90°)=1/0

  • 例: 

                定义域:(-8, 13]\{2},反斜杠表示“不包括”

1.1.3 利用图像求值域

  • F(x)=x^2,其定义域为[-2, 1];f(x)=x^2,其定义域为所有实数。

        F和f是不同的函数,尽管有相同的函数规定,但定义域不同

  •         

        值域为影子的并集,即左侧[0, 4]和右侧[0,1]的并集。F的值域为[0, 4]。

1.1.4 垂线检验

  • 函数f的图像是所有坐标为(x, f(x))的点的集合,其中x在f的定义域中。
  • 垂线检验:是否任何的垂线和图像相交多于一次,如果是,则它不是函数的图像,反之则是函数的图像。
  •   

        图1-2不是函数的图像,图1-3是函数的图像

1.2 反函数

  • 从输出y出发,这个新的函数发现一个且仅有一个输入x满足f(x)=y,这个新的函数称为f的反函数,并写作f^-1。
  • 数学语言对上述情形的总结:
    1. 从一个函数f出发,使得对于在f值域中的任意y,都只有唯一的x值满足f(x)=y。即不同的输入对应不同的输出。
    2. f^-1的定义域和f的值域相同。
    3. f^-1的值域和f的定义域相同。
    4. f^-1(y)的值就是满足f(x)=y的x。所以,如果f(x)=y,那么f^-1(y)=x。

1.2.1 水平线检验

  • 水平线检验:如果每一条水平线和一个函数的图像相交至多一次,那么这个函数就有一个反函数,反之则没有反函数。

        f有反函数,g无反函数

1.2.2 求反函数

  • 如何求得函数f的反函数?

        写下y=f(x),解出x

  • 例:

        画出反函数的图像:在图像上画一条y=x的直线,反函数就是原始函数的镜面反射。

1.2.3 限制定义域

  • 如果水平线检验失败而没有反函数,即对于相同的y有多个x值。那么解决此问题的唯一方法是:除了这多个x值中的一个,放弃所有其他值,即限制函数的定义域

        

        若让没有通过水平线检验的、定义域为(-∞, ∞)的原始函数g(x)=x^2在镜子y=x中反射,则得到图1-8所示图像。该图不会通过垂线检验,不是函数的图像。

1.2.4 反函数的反函数

  • 如果f有反函数,那么对于在f定义域中的所有x,f-1(f(x))=x成立;同样,对于在f值域当中的所有y,都有f(f^-1(y))=y

        

  • 对于限制定义域的情况,如果一个函数f的定义域可以被限制,使得f有反函数f^-1,那么
    1. 对于f值域中的所有y,都有f(f^-1(y))=y;但
    2. f^-1(f(x))可能不等于x;事实上,f^-1(f(x))=x仅当x在限制的定义域中才成立。

                对于所有y,f-1(y)对应的x值只有一个,因此f(f-1(y))=f(x)对应的y是一定的;

                f(x)对应的y值一定,但f-1(y)对应的x可能有多个

1.3 函数的复合

  • f(x)=h(g(x)),也可表示为f=h∘g,这里的圈表示“与……的复合”,即f是g与h的复合。
  • 将f和g(x)=x-a(a是常数)进行复合,得到新函数h(x)=f(x-a)

        新函数y=h(x)和函数y=f(x)的图像是一样的,只不过y=h(x)的函数图像向右平移了a个单位

1.4 奇函数和偶函数

  • 如果对f定义域里的所有x有f(-x)=f(x),则f是偶函数

        如果对f定义域里的所有x有f(-x)=-f(x),则f是奇函数

  • 偶函数的图像关于y轴具有镜面对称性

        奇函数的图像关于原点有180°的点对称性

  • 判断f是奇函数、偶函数还是非奇非偶函数:将每个x替换为-x并计算f(-x)

        

         

        f是偶函数

        

        

        g是奇函数

          

        h是非奇非偶函数

  • 只有一个函数是既奇又偶的,就是f(x)=0(零函数)

        如果一个函数是奇的,且0在其定义域内,则f(0)=0

  • 两个奇函数之积是偶函数

        h(x)=f(x)g(x)

        

1.5 线性函数的图像

  • 形如f(x)=mx+b的函数叫做线性函数

        

  • 直线方程的点斜式:

        

  • 通过两点求斜率:

        

1.6 常见函数及其图像

  • 多项式: 

        基本项x^n的倍数叫做x^n的系数

        最大的幂指数n(该项系数不能为0)叫做多项式的次数

        

        多项式的图像左右两端的走势可以由最高次数的项的系数来判断,该系数叫做首项系数

        

  • 二次函数:次数为2的多项式

        p(x)=ax^2+bx+c

        ∆=b^2-4ac ∆>0,两个不同解;∆=0,一个解;∆<0,实数范围内无解

        对于前两种情况,解为 

​​​​​​​​​​​​​​        ​​​​​​​配方: 

  • 有理函数:p(x)/q(x),其中p和q为多项式的函数

        

  • 指数函数和对数函数

          

  • 三角函数
  • 带有绝对值的函数:形如f(x)=|x|

        

        

         

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值