目录
第三章 极限导论
3.1 极限:基本思想
1. f(x)=x-1, x≠2
读作:当x趋于2,f(x)的极限等于1
2.
g(2)的值与该极限不相关。只有那些在x接近于2时的g(x)的值,而不是在2处的值,才是问题的关键。
3. 中,变量x只是一个虚拟变量。它是一个暂时的标记,用来表示某个非常接近于2的量,可以被替换成其他任意字母,只要替换是彻底的;同样,当你求出极限的值时,结果不可能包含这个虚拟变量。
也可写作:
3.2 左极限与右极限
1. h(x)在x=3的左极限等于1,在x=3的右极限等于-2
2. 双侧极限在x=a处存在,仅当左极限和右极限在x=a处都存在且相等。
等价于
3. 如果左极限和右极限不相等,则双侧极限不存在,写作 (缩写DNE表示“不存在”)
3.3 何时不存在极限
1.
左极限和右极限不相等,故双侧极限不存在
2.
3. 左极限或右极限也可能不存在
在x=0附近很杂乱,它无限地在1和-1之间振荡,没有垂直渐近线,也没有极限。因此可以说 不存在(DNE)。
3.4 在∞和-∞处的极限
1.
不存在(DNE)
2. 大的数和小的数
如果一个数的绝对值是非常大的数,则这个数是大的;
如果一个数非常接近于0(但不是真的等于0),则这个数是小的
多大才是“足够大”?取决于你想让f(x)距离L有多近。100在左图足够大,而在右图就不是足够大。
用术语“在∞附近”代替“大的正的数”
3.5 关于渐近线的两个常见误解
1. 一个函数不一定要在左右两边有相同的水平渐近线。
一个函数可以有不同的右侧和左侧水平渐近线,但最多只能有两条水平渐近线(一条在右侧,另一条在左侧),也可能一条都没有或者只有一条。这和垂直渐近线相反:一个函数可以有很多条垂直渐近线(如y=tan(x))。
2. 一个函数可能和它的渐近线相交。
考虑定义为f(x)=sin(x)/x的函数f,sin(x)的值在-1和1之间振荡,sin(x)/x的值在曲线y=-1/x和y=1/x之间振荡。,x轴是f的水平渐近线,且y=f(x)的图像一次又一次与x轴相交。
3.6 三明治定理
1. 三明治定理(又称作夹逼定理):如果一个函数f被夹在函数g和h之间,当x→a时,这两个函数g和h都收敛于同一个极限L,那么当x→a时,f也收敛于极限L。
2. 对于单侧极限,同理。如
3.
这也适用于左极限或右极限;在那种情况下,不等式只需要在a的相应一侧对于x成立即可。当a是∞或-∞时也适用;在那种情况下,要求对于所有的非常大的x,不等式成立。
3.7 极限的基本类型小结
1. x=a时的右极限
2. x=a时的左极限
3. x=a时的双侧极限
4. x→∞时的极限
5. x→-∞时的极限