普林斯顿微积分读本 第三章 极限导论

目录

第三章 极限导论

3.1 极限:基本思想

3.2 左极限与右极限

3.3 何时不存在极限

3.4 在∞和-∞处的极限

3.5 关于渐近线的两个常见误解

3.6 三明治定理

3.7 极限的基本类型小结


第三章 极限导论

3.1 极限:基本思想

1. f(x)=x-1, x≠2

  读作:当x趋于2,f(x)的极限等于1

2.  

g(2)的值与该极限不相关。只有那些在x接近于2时的g(x)的值,而不是在2处的值,才是问题的关键。

3.  中,变量x只是一个虚拟变量。它是一个暂时的标记,用来表示某个非常接近于2的量,可以被替换成其他任意字母,只要替换是彻底的;同样,当你求出极限的值时,结果不可能包含这个虚拟变量。

也可写作: 

3.2 左极限与右极限

 

1. h(x)在x=3的左极限等于1,在x=3的右极限等于-2

2. 双侧极限在x=a处存在,仅当左极限和右极限在x=a处都存在且相等。

 等价于 

3. 如果左极限和右极限不相等,则双侧极限不存在,写作 (缩写DNE表示“不存在”)

3.3 何时不存在极限

1.  

 

左极限和右极限不相等,故双侧极限不存在

2.  

3. 左极限或右极限也可能不存在

 在x=0附近很杂乱,它无限地在1和-1之间振荡,没有垂直渐近线,也没有极限。因此可以说 不存在(DNE)。

3.4 在∞和-∞处的极限

1.  

 不存在(DNE)

 

 

2. 大的数和小的数

如果一个数的绝对值是非常大的数,则这个数是大的

如果一个数非常接近于0(但不是真的等于0),则这个数是小的

多大才是“足够大”?取决于你想让f(x)距离L有多近。100在左图足够大,而在右图就不是足够大。

用术语“在∞附近”代替“大的正的数”

3.5 关于渐近线的两个常见误解

1. 一个函数不一定要在左右两边有相同的水平渐近线。

 

一个函数可以有不同的右侧和左侧水平渐近线,但最多只能有两条水平渐近线(一条在右侧,另一条在左侧),也可能一条都没有或者只有一条。这和垂直渐近线相反:一个函数可以有很多条垂直渐近线(如y=tan(x))。

2. 一个函数可能和它的渐近线相交。

考虑定义为f(x)=sin(x)/x的函数f,sin(x)的值在-1和1之间振荡,sin(x)/x的值在曲线y=-1/x和y=1/x之间振荡。,x轴是f的水平渐近线,且y=f(x)的图像一次又一次与x轴相交。

3.6 三明治定理

1. 三明治定理(又称作夹逼定理):如果一个函数f被夹在函数g和h之间,当x→a时,这两个函数g和h都收敛于同一个极限L,那么当x→a时,f也收敛于极限L。

2. 对于单侧极限,同理。如 

 

3.  

这也适用于左极限或右极限;在那种情况下,不等式只需要在a的相应一侧对于x成立即可。当a是∞或-∞时也适用;在那种情况下,要求对于所有的非常大的x,不等式成立。

3.7 极限的基本类型小结

1. x=a时的右极限

2. x=a时的左极限

3. x=a时的双侧极限

4. x→∞时的极限

5. x→-∞时的极限

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值