【LeetCode】47. 全排列 II(中等)——代码随想录算法训练营Day29

题目链接:47. 全排列 II

题目描述

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

输入:nums = [1,1,2]
输出:
[[1,1,2],
 [1,2,1],
 [2,1,1]]

示例 2:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

文章讲解:代码随想录

视频讲解:回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II_哔哩哔哩_bilibili

题解1:回溯法

思路:使用回溯法解决排列问题。

  • 递归函数的参数和返回值:首先创建3个变量 res、path 和 set,path 记录遍历的路径,res 记录结果,set 记录元素的访问状态。递归函数的返回值为 void,没有参数。
  • 递归函数的终止条件:找到叶子节点,即 path.length 和 nums.length 相同,也就是查找完毕。
  • 单层递归的逻辑:使用 for 循环从0开始直到 nums.length 横向遍历,在当前元素没有访问过时递归的向下纵向遍历寻找组合。
  • 剪枝:无。
  • 去重:① 树枝去重,避免结果中出现相同的元素。② 树层去重,防止结果中出现相同的排列。
/**
 * @param {number[]} nums
 * @return {number[][]}
 */
var permuteUnique = function(nums) {
    const res = []; // 结果数组
    const path = []; // 路径
    const arr = new Array(nums.length).fill(false); // 用于树枝去重,记录所有元素的访问状态
    const backtracking = function () {
        if (path.length === nums.length) {
            res.push([...path]); // 当路径的长度和 nums 的长度相等时,记录结果并返回
            return;
        }
        const set = new Set(); // 用于树层去重,记录元素的访问状态
        for (let i = 0; i < nums.length; i++) {
            // 树枝去重和树层去重
            if (arr[i] || set.has(nums[i])) {
                continue;
            }
            path.push(nums[i]); // 记录路径
            arr[i] = true; // 记录访问状态
            set.add(nums[i]); // 记录访问状态
            backtracking(); // 向下查找
            // 回溯
            path.pop();
            arr[i] = false;
        }
    }
    backtracking();
    return res;
};

分析:时间复杂度为 O(n!),空间复杂度为 O(n)。

收获

排列问题中的去重情况,和组合问题、分割问题、子集问题类似,使用树层去重。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴雪月乔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值