代码随想录-回溯算法(排列问题)|*46.全排列* 47.全排列 II

目录

前言:

一、全排列

题目描述:#力扣题目链接

输入输出示例:

思路和想法:

二、全排列 II

题目描述: #力扣题目链接

输入输出示例:

思路和想法: 


前言:

        首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这是和之前分析的子集以及组合所不同的地方。

        所以这里不使用Index,但依旧需要used数组标记已经选择的元素。

一、全排列

题目描述:#力扣题目链接

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

输入输出示例:

示例1:

输入:nums = [1,2,3]                                         输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

示例2:

输入:nums = [0,1]                                           输出:[[0,1],[1,0]]

示例3:

输入:nums = [1]                                              输出:[[1]]

提示:

  • 1 <= nums.length <= 6
  • -10 <= nums[i] <= 10
  • nums 中的所有整数 互不相同

思路和想法:

        这道题的思路在于判断是否重复提取同一个元素,相较于之前的组合问题,不能采用startIndex来定位,排列问题每次都要从头开始搜索。

        这里使用used数组标记已经选择的元素。

class Solution {
    vector<vector<int>> result;
    vector<int> path;
    void backtracing(vector<int>& nums, vector<bool>& used){
        if (path.size() == nums.size()) {
        result.push_back(path);
        return;
        }

        for(int i = 0; i < nums.size(); i++){
            if(used[i] == true) continue;
            used[i] = true;
            path.push_back(nums[i]);
            backtracing(nums, used);
            path.pop_back();
            used[i] = false;
        }
    }
public:
    vector<vector<int>> permute(vector<int>& nums) {
        vector<bool> used(nums.size(), false);
        path.clear();
        result.clear();
        if(nums.size() == 0){
            return result;
        }
        backtracing(nums, used);
        return result;
    }
};

二、全排列 II

题目描述: #力扣题目链接

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

输入输出示例:

示例1:

输入:nums = [1,1,2]                                         输出: [[1,1,2], [1,2,1], [2,1,1]]

示例2:

输入:nums = [1,2,3]                                         输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

思路和想法: 

        相较于全排列上一道题来讲,区别在于可能包含重复数字序列。组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果

        这里则是取最后的叶节点。

class Solution {
    vector<vector<int>> result;
    vector<int> path;
    void backtracing(vector<int> & nums, vector<bool> used){
        if(path.size() == nums.size()){
            result.push_back(path);
            return;
        }

        for(int i = 0; i < nums.size(); i++){
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }
            if (used[i] == false) {
                used[i] = true;
                path.push_back(nums[i]);
                backtracing(nums, used);
                path.pop_back();
                used[i] = false;
            }

        }
    }
public:
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        result.clear();
        path.clear();
        if(nums.size() == 0){
            return result;
        }
        sort(nums.begin(), nums.end());
        vector<bool> used(nums.size(), false);
        backtracing(nums, used);
        return result;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

希希雾里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值