题目链接:62. 不同路径
题目描述
一个机器人位于一个 m x n
网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7 输出:28
示例 2:
输入:m = 3, n = 2 输出:3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。 1. 向右 -> 向下 -> 向下 2. 向下 -> 向下 -> 向右 3. 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3 输出:28
示例 4:
输入:m = 3, n = 3 输出:6
提示:
1 <= m, n <= 100
- 题目数据保证答案小于等于
2 * 109
文章讲解:代码随想录
视频讲解:动态规划中如何初始化很重要!| LeetCode:62.不同路径_哔哩哔哩_bilibili
题解1:动态规划
思路:到第0行和第0列的格子都只有1种走法,到第 i 列第 j 行的格子可以从第 i - 1列第 j 行的格子往右走,也可以是第 i 列第 j - 1 行的格子往下走。因此,到第 i 列第 j 行的格子的走法为到第 i - 1列第 j 行的格子的走法加上到第 i 列第 j - 1 行的格子的走法。
动态规划分析:
- dp 数组以及下标的含义:dp[i][j] 代表到达 (i, j) 格子的走法数量。
- 递推公式:dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。
- dp 数组初始化:第0行和第0列全部初始化为1。
- 遍历顺序:从上到下,从左到右。
- 打印 dp 数组:以输入为3、2举例,dp 数组为 [[1, 1], [1, 2], [1, 3]]。
/**
* @param {number} m
* @param {number} n
* @return {number}
*/
var uniquePaths = function(m, n) {
const dp = new Array(m).fill().map(() => new Array(n).fill(1));
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
};
分析:时间复杂度为 O(m * n),空间复杂度为 O(m * n)。
题解2:动态规划优化
思路:因为 dp[i][j] 只依赖于 dp[i - 1][j] 和 dp[i, j - 1],即本层前1个值和上一层相同位置的值。上一层相同位置的值可以看成它本身,因此可以将 dp 数组由二维数组优化为一维数组。dp[j] 相当于 dp[i - 1][j],dp[j - 1] 相当于 dp[i, j - 1]。
/**
* @param {number} m
* @param {number} n
* @return {number}
*/
var uniquePaths = function(m, n) {
const dp = new Array(n).fill(1);
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
dp[j] += dp[j - 1];
}
}
return dp[n - 1];
};
分析:时间复杂度为 O(m * n),空间复杂度为 O(n)。
题解3:组合数
思路:从 m * n 矩阵的左上角走到右下角要向右走 n - 1 步,向下走 m - 1步,一共走 m + n - 2 步,走法数量相当于从 m + n - 2 个数中任意取 m - 1 个数的取法,即组合数 。
/**
* @param {number} m
* @param {number} n
* @return {number}
*/
var uniquePaths = function(m, n) {
let res = 1;
for (let k = 0; k < m - 1; k++) {
res = res * ((m + n - 2) - k) / (k + 1);
}
return res;
};
分析:时间复杂度为 O(m),空间复杂度为 O(1)。
收获
练习使用动态规划法求解路径问题。