【LeetCode】62. 不同路径(中等)——代码随想录算法训练营Day39

文章介绍了如何使用动态规划方法解决LeetCode题目62——计算机器人在mxn网格中从左上角到右下角的不同路径数量。给出了三种解题思路,包括常规二维数组、一维数组优化和组合数计算,并分析了它们的时间复杂度和空间复杂度。
摘要由CSDN通过智能技术生成

题目链接:62. 不同路径

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

文章讲解:代码随想录

视频讲解:动态规划中如何初始化很重要!| LeetCode:62.不同路径_哔哩哔哩_bilibili

题解1:动态规划

思路:到第0行和第0列的格子都只有1种走法,到第 i 列第 j 行的格子可以从第 i - 1列第 j 行的格子往右走,也可以是第 i 列第 j - 1 行的格子往下走。因此,到第 i 列第 j 行的格子的走法为到第 i - 1列第 j 行的格子的走法加上到第 i 列第 j - 1 行的格子的走法。

动态规划分析:

  • dp 数组以及下标的含义:dp[i][j] 代表到达 (i, j) 格子的走法数量。
  • 递推公式:dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。
  • dp 数组初始化:第0行和第0列全部初始化为1。
  • 遍历顺序:从上到下,从左到右。
  • 打印 dp 数组:以输入为3、2举例,dp 数组为 [[1, 1], [1, 2], [1, 3]]。
/**
 * @param {number} m
 * @param {number} n
 * @return {number}
 */
var uniquePaths = function(m, n) {
    const dp = new Array(m).fill().map(() => new Array(n).fill(1));
    for (let i = 1; i < m; i++) {
        for (let j = 1; j < n; j++) {
            dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
        }
    }
    return dp[m - 1][n - 1];
};

分析:时间复杂度为 O(m * n),空间复杂度为 O(m * n)。

题解2:动态规划优化

思路:因为 dp[i][j] 只依赖于 dp[i - 1][j] 和 dp[i, j - 1],即本层前1个值和上一层相同位置的值。上一层相同位置的值可以看成它本身,因此可以将 dp 数组由二维数组优化为一维数组。dp[j] 相当于 dp[i - 1][j],dp[j - 1] 相当于 dp[i, j - 1]。

/**
 * @param {number} m
 * @param {number} n
 * @return {number}
 */
var uniquePaths = function(m, n) {
    const dp = new Array(n).fill(1);
    for (let i = 1; i < m; i++) {
        for (let j = 1; j < n; j++) {
            dp[j] += dp[j - 1];
        }
    }
    return dp[n - 1];
};

分析:时间复杂度为 O(m * n),空间复杂度为 O(n)。

题解3:组合数

思路:从 m * n 矩阵的左上角走到右下角要向右走 n - 1 步,向下走 m - 1步,一共走 m + n - 2 步,走法数量相当于从 m + n - 2 个数中任意取 m - 1 个数的取法,即组合数 C_{m + n - 2}^{m - 1}

/**
 * @param {number} m
 * @param {number} n
 * @return {number}
 */
var uniquePaths = function(m, n) {
    let res = 1;
    for (let k = 0; k < m - 1; k++) {
        res = res * ((m + n - 2) - k) / (k + 1);
    }
    return res;
};

分析:时间复杂度为 O(m),空间复杂度为 O(1)。

收获

练习使用动态规划法求解路径问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴雪月乔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值