【LeetCode】322. 零钱兑换(中等)——代码随想录算法训练营Day45

题目链接:322. 零钱兑换

题目描述

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3
 
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

提示:

  • 1 <= coins.length <= 12
  • 1 <= coins[i] <= 231 - 1
  • 0 <= amount <= 104

文章讲解:代码随想录

视频讲解:动态规划之完全背包,装满背包最少的物品件数是多少?| LeetCode:322.零钱兑换_哔哩哔哩_bilibili

题解1:动态规划

思路:如果本题的硬币组能凑成任意情况,如1、2、5,就可以用贪心算法求解,但并非这样,所以不能使用贪心算法。这是一个完全背包问题,可以使用动态规划法求解装满背包最少需要多少个物品。

动态规划分析:

  • dp 数组以及下标的含义:dp[j] 代表容量为 j 的背包最少由 dp[j] 个物品装满。
  • 递推公式:dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1)。
  • dp 数组初始化:dp[0] 初始化为0,为了保证取最小的结果正确,后续元素需初始化为 Number.MAX_VALUE。
  • 遍历顺序:本题求解的是最小元素数量,和元素的顺序没关系,因此求排列和组合都可以,即先遍历物品再遍历背包和先遍历背包再遍历物品都可以。
  •  打印 dp 数组:以输入 coins = [1,2,5]、amount = 11为例,dp 数组为 [ 0, 1, 1, 2, 2, 1, 2, 2, 3, 3, 2, 3 ]。
/**
 * @param {number[]} coins
 * @param {number} amount
 * @return {number}
 */
var coinChange = function(coins, amount) {
    const dp = new Array(amount + 1).fill(Number.MAX_VALUE);
    dp[0] = 0;
    for (let i = 0; i < coins.length; i++) {
        for (let j = coins[i]; j <= amount; j++) {
            dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);
        }
    }
    return dp[amount] !== Number.MAX_VALUE ? dp[amount] : -1;
};

分析:令 n 为 coins 的长度,m 为 amount,则时间复杂度为 O(n * m),空间复杂度为 O(m)。

收获

完全背包问题的遍历顺序是一个重点,先遍历物品再遍历背包求组合,先遍历背包再遍历物品求排列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴雪月乔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值