题目链接:322. 零钱兑换
题目描述
给你一个整数数组 coins
,表示不同面额的硬币;以及一个整数 amount
,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1
。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11 输出:3 解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3 输出:-1
示例 3:
输入:coins = [1], amount = 0 输出:0
提示:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104
文章讲解:代码随想录
视频讲解:动态规划之完全背包,装满背包最少的物品件数是多少?| LeetCode:322.零钱兑换_哔哩哔哩_bilibili
题解1:动态规划
思路:如果本题的硬币组能凑成任意情况,如1、2、5,就可以用贪心算法求解,但并非这样,所以不能使用贪心算法。这是一个完全背包问题,可以使用动态规划法求解装满背包最少需要多少个物品。
动态规划分析:
- dp 数组以及下标的含义:dp[j] 代表容量为 j 的背包最少由 dp[j] 个物品装满。
- 递推公式:dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1)。
- dp 数组初始化:dp[0] 初始化为0,为了保证取最小的结果正确,后续元素需初始化为 Number.MAX_VALUE。
- 遍历顺序:本题求解的是最小元素数量,和元素的顺序没关系,因此求排列和组合都可以,即先遍历物品再遍历背包和先遍历背包再遍历物品都可以。
- 打印 dp 数组:以输入 coins = [1,2,5]、amount = 11为例,dp 数组为 [ 0, 1, 1, 2, 2, 1, 2, 2, 3, 3, 2, 3 ]。
/**
* @param {number[]} coins
* @param {number} amount
* @return {number}
*/
var coinChange = function(coins, amount) {
const dp = new Array(amount + 1).fill(Number.MAX_VALUE);
dp[0] = 0;
for (let i = 0; i < coins.length; i++) {
for (let j = coins[i]; j <= amount; j++) {
dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);
}
}
return dp[amount] !== Number.MAX_VALUE ? dp[amount] : -1;
};
分析:令 n 为 coins 的长度,m 为 amount,则时间复杂度为 O(n * m),空间复杂度为 O(m)。
收获
完全背包问题的遍历顺序是一个重点,先遍历物品再遍历背包求组合,先遍历背包再遍历物品求排列。