题目链接:337. 打家劫舍 III
题目描述
小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root
。
除了 root
之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。
给定二叉树的 root
。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。
示例 1:
输入: root = [3,2,3,null,3,null,1] 输出: 7 解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7
示例 2:
输入: root = [3,4,5,1,3,null,1] 输出: 9 解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9
文章讲解:代码随想录
视频讲解:动态规划,房间连成树了,偷不偷呢?| LeetCode:337.打家劫舍3_哔哩哔哩_bilibili
题解1:后序遍历
思路:遍历一个树的最大价值,相当于不取根节点和取根节点2种情况取最大值。不取根节点即为左子树的最大值加右子树的最大值,取根节点相当于根节点值加上左右子树孩子的最大值。使用记忆化递归优化速度。
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var rob = function(root) {
const map = new Map();
const fun = function (node) {
if (!node) {
return 0;
}
if (map.has(node)) {
return map.get(node);
}
const num1 = fun(node.left) + fun(node.right);
let num2 = node.val;
if (node.left) {
num2 += fun(node.left.left) + fun(node.left.right);
}
if (node.right) {
num2 += fun(node.right.left) + fun(node.right.right);
}
map.set(node, Math.max(num1, num2));
return map.get(node);
};
return fun(root);
};
分析:时间复杂度为 O(n),空间复杂度为 O(logn)。
题解2:动态规划
思路:使用树形 dp,采用后序遍历,返回不取当前节点的最大值和取当前节点的最大值。取当前节点为当前节点的值加上左子树不取左孩子的最大值和右子树不取右孩子的最大值之和,不取当前节点为左子树最大值和右子树最大值之和。最后得出整个树的最大值。
动态规划分析:
- dp 数组以及下标的含义:dp[0] 表示不取当前节点的最大值,dp[1] 表示取当前节点的最大值。
- 递推公式:用 dpLeft 表示当前节点左子树的 dp 数组,dpRight 表示当前节点右子树的 dp 数组,则当前节点的 dp 数组为,dp = [Math.max(dpLeft[0], dpLeft[1]) + Math.max(dpRight[0], dpRight[1]), node.val + dpLeft[0] + dpRight[0]]。
- dp 数组初始化:空节点的 dp 数组为 [0, 0]。
- 遍历顺序:后序遍历。
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var rob = function(root) {
const fun = function (node) {
if (!node) {
return [0, 0];
}
const dpLeft = fun(node.left);
const dpRight = fun(node.right);
return [Math.max(dpLeft[0], dpLeft[1]) + Math.max(dpRight[0], dpRight[1]), node.val + dpLeft[0] + dpRight[0]];
};
return Math.max(...fun(root));
};
分析:时间复杂度为 O(n),空间复杂度为 O(logn)。
收获
学习树形 dp 数组的动态规划法。